В непосредственном идейном подчинении Королева несмотря на структурные схемы оставались творчески сильные коллективы, которыми руководили Константин Бушуев, Михаил Тихонравов, Павел Цыбин, Константин Феоктистов. Под их началом работали главные проектанты: Евгений Рязанов, Глеб Максимов, Юрий Денисов, Юрий Фрумкин, Вячеслав Дудников, Андрей Решетин и другие еще не очень опытные, но полные энтузиазма специалисты.
С самого начала я просил Королева освободить меня от ответственности за проектные работы по всей космической тематике, чтобы я мог сосредоточиться на совершенно новом направлении — создании космических систем управления.
Он в принципе согласился, при условии, что, оставаясь после Мишина его первым заместителем, я должен «присматривать и быть в курсе» всего, что творят Бушуев, Тихонравов и Цыбин. «С учетом того, что они много лишнего фантазируют, пусть через тебя проходят задания проектантов в конструкторский отдел Болдырева».
На том и порешили. С Бушуевым и другими руководителями проектантов мы быстро договорились и отлично ладили, ибо их деятельность во многом определялась идеями и успешной работой управленцев.
Мишин, по мысли Королева, должен был сосредоточить свою энергию и опыт на разработке новых боевых ракет: Р-9, глобальной ракеты, — двигательной тематике и разработке перспективной стратегии, включая будущую тяжелую ракету-носитель H1 для лунной экспедиции.
Мишин во времена всех реорганизаций, которые предпринимал Королев с 1947 года, всегда оставался его «самым» первым заместителем не только по техническим, но и по административным вопросам.
Очень разносторонняя деятельность по созданию новых космических систем управления развивалась параллельно с сохранением за моими подразделениями разработок рулевых систем, внутрибаковых и курирования систем управления боевых ракет и ракет-носителей.
Перечислю только главные направления нашей работы:
управление движением (ориентация, навигация, динамика ракет и космических аппаратов);
системное объединение управления бортовой аппаратурой системой «земля-борт», электрооборудование, специальные автономные системы, радиотехнические системы, антенно-фидерные устройства;
конструкторские работы, электромеханические, электрогидравлические системы, испытания приборов.
Перечисление всего, чем занимались коллективы управленцев-прибористов, заняло бы слишком много времени и места. Тем более, что любая наша работа была связана со смежными организациями, рассказ о которых заслуживает специального трактата.
Ниже я останавливаюсь на тех наших работах, которые получили высокую оценку в научных кругах, способствовали эпохальным вкладам в развитие космонавтики, были реализованы и начаты в годы второго космического десятилетия. Другим ограничением будут системы управления движением как наиболее интересные с точки зрения науки о поведении людей в контуре упавления.
Первые два советских ИСЗ, как известно, после отделения от ракеты-носителя летали в космосе без всякого управления движением и ориентации в пространстве. Ими управляли законы небесной механики. Как мы говорили, они подчинялись только нашим баллистикам.
Третий ИСЗ, запущенный 15 мая 1958 года, в отличие от двух первых уже имел первую в нашей практике командную радиолинию. Техническое задание на КРЛ разрабатывалось мною совместно с нашими радиоинженерами: Шустовым, Щербаковой, Краюшкиным — и первыми «космическими» электриками, авторами логики управления: Карповым, Шевелевым, Сосновиком. 22 августа 1956 года я получил на техническом задании утверждающую подпись Королева. Решение о первом простейшем спутнике еще не было принято, и мы полагали, что секретный объект «Д» — будущий третий спутник — будет первым космическим аппаратом. Управление включением и режимами научной аппаратуры по КРЛ казалось нам тогда качественным скачком по сравнению с системами радиоуправления баллистических ракет. Разработкой бортовой и наземной аппаратуры первой космической КРЛ в НИИ-648 руководил его директор — научный руководитель Николай Белов. Первая КРЛ была создана за полтора года. Она обеспечивала передачу на борт 20 разовых команд немедленного исполнения. На базе этой КРЛ затем были созданы более совершенные для пилотируемых программ.
Следующим шагом должно было стать управление движением будущих космических аппаратов. Оказалось, что для социалистов — разработчиков систем автоматического управления движением ракет создание систем управления движением космических аппаратов требует преодоления психологического барьера.
Этот барьер был преодолен с приходом в ОКБ-1 коллектива Раушенбаха.
Начиная с «Луны-3» все наши космические аппараты имели системы, позволяющие корректировать околоземные и межпланетные траектории. Суть процесса коррекции состоит в том, что предварительно измеряются параметры фактической орбиты или траектории полета с помощью наземных средств командно-измерительного комплекса, определяется отклонение траектории от расчетной, в зависимости от величины ошибки расчитывается необходимый корректирующий импульс и в определенной точке траектории в определенное время включается двигатель системы бортовой корректирующей установки и формируется новая орбита.
Чтобы осуществить эту операцию, космический аппарат должен уметь ориентироваться в пространстве, поворачиваясь на любые углы, задаваемые уставками, передаваемыми по КРЛ с Земли, сохранять заданную ориентацию во время работы корректирующего двигателя и управлять самой двигательной установкой, обеспечивая требуемую величину корректирующего импульса.
Управление ориентацией — один из самых ответственных режимов управления движением. При этом должно быть обеспечено придание космическому аппарату нужного углового положения относительно известных ориентиров поворотом его вокруг центра масс.
Особая ответственность лежит на системах ориентации космических кораблей при выдаче тормозного импульса, необходимого для возвращения на Землю. В случае ошибки космический корабль может не вернуться на Землю вообще, если импульс, выданный двигателем, не опустит, а поднимет орбиту. Ориентация в пространстве необходима не только для коррекции орбиты, но и для выполнения программ научных наблюдений, фотографирования, выставки в нужном направлении остронаправленных антенн и т.д.
С 1960 года решение проблем управления ориентацией и стабилизацией космических аппаратов было возложено на коллектив Раушенбаха, первоначально именовавшийся «отдел 27». Обилие тематических программ потребовало резкого увеличения, а затем разделения отдела 27 на три: теоретический отдел динамики движения Виктора Легостаева, отдел разработки схем и аппаратуры Евгения Башкина и отдел исполнительных органов ориентации — корректирующих микродвигателей — Дмитрия Князева. Эти три отдела пользовались помощью нашего сильного радиоэлектронного отдела Анатолия Шустова, который успешно разрабатывал программно-временные устройства, предшественники современных бортовых компьютеров, конструкторского отдела Семена Чижикова, выпускавшего рабочие чертежи любых приборов для заводского изготовления, и разработками главных конструкторов-смежников. В КБ «Геофизика» главный конструктор оптико-электронных приборов Владимир Хрусталев по нашим техническим заданиям разрабатывал приборы-датчики для ориентации на Землю, Солнце и звезды. Главный ракетный гироскопист Виктор Кузнецов также по нашим заданиям разрабатывал гироскопические приборы. Во ВНИИЭМе у Андроника Иосифьяна Николай Шереметьевский разработал силовой маховик для управления ориентацией «Молнии», в городе Суммы на заводе электронных микроскопов разрабатывались датчики для придуманной нами «ионной» системы ориентации.
Каждая космическая программа требовала разработки своих, специально для данного конкретного летательного аппарата, систем ориентации. Общим для всех было требование в нужное время обеспечить трехосную ориентацию, то есть иметь возможность установить космический аппарат в пространстве, закрепив его три взаимно перпендикулярные воображаемые оси неподвижно относительно звезд или поверхности Земли и вектора скорости либо маневрируя ими по заданной программе или командам. Идейная разработка трехосной ориентации ИСЗ на Землю в отделе Легостаева была поручена одному из первых выпускников московского физтеха — Евгению Токарю. Работы над такой системой Токарь начал еще в НИИ-1, работая с Раушенбахом под руководством Келдыша. В 1957 году он выпустил отчет «Об активной системе стабилизации искусственного спутника Земли». Любопытно, что этот отчет воспроизведен в издании: Келдыш М.В. Избранные труды: М.: Наука, 1988.
В работе Токаря впервые предлагалась система, которая стала классической для всех «Востоков», «Восходов» и «Зенитов», и существовала до времен, пока не наступила эпоха «бесплатформенных» систем. Для ориентации одной из осей спутника по местной земной вертикали (то есть по направлению к центру Земли) предлагалось использовать прибор, чувствительный к инфракрасному излучению поверхности планеты. Идея сканирования таким прибором границы между видимым с космического аппарата земным диском и космосом была высказана Раушенбахом. В разработке схемы и теоретических основ прибора значительное участие принимали Евгений Башкин и Станислав Савченко. Первый реальный прибор ИКВ был выполнен Владимиром Хрусталевым и Борисом Медведевым в ЦКБ «Геофизика». В настоящее, время ни один околоземный спутник не обходится без ИКВ — построителя местной вертикали. ОКБ «Геофизика» с тех давних пор довело надежность, точность и массу ИКВ до величин, о которых в первые годы мы и не мечтали.