Дабы избежать недопонимания в вопросах физиологического воздействия переменного тока высокой частоты, я полагаю необходимым сказать, что, в то время как такой ток несравненно менее опасен, чем ток низкой частоты, следует помнить, что он всё же вреден. Всё, о чем сейчас говорилось, касается только токов в обычных катушках индуктивности высокого напряжения, каковые токи обязательно малы; если такие токи получать непосредственно от генератора или вторичной обмотки низкого сопротивления, то они производят более или менее сильное воздействие и могут вызвать серьезную травму, в особенности при соединении с конденсатором.
Текущий разряд на катушке индуктивности высокого напряжения во многом отличается от такого же разряда мощной статической машины. Что касается расцветки, то он ни фиолетовый положительный, ни яркий отрицательный статический разряд, а что-то среднее, причем он, естественно, попеременно положительный и отрицательный. Но поскольку поток более мощный, когда острие, или контакт, имеет положительный заряд, то конец пучка более подобен положительному полюсу, а основание — отрицательному при статическом разряде. В темноте, если пучок очень мощный, основание может выглядеть почти белым. Движение воздуха, производимое отходящими потоками, хотя и довольно сильное и его можно почувствовать на расстоянии, тем не менее, учитывая количественные показатели разряда, менее сильное, чем движение воздуха от статической машины, и гораздо слабее воздействует на пламя. Исходя из природы этого явления, мы можем сделать вывод о том, что чем выше частота, тем слабее, конечно, движение воздуха, создаваемое потоками, а при достаточно высоких частотах, при нормальном атмосферном давлении, этого движения совсем нет. При тех частотах, которые можно получить при помощи машины, механический эффект достаточен для вращения большого колеса со значительной скоростью, и эта картина очень красива в темноте из-за множества исходящих потоков (рисунок 10).
В общем, большинство опытов, проводимых со статической машиной, можно проводить с катушкой индуктивности при использовании высокочастотных переменных токов. При этом вызываемые к жизни явления еще более потрясающи при увеличении мощности. Если небольшой кусок обычного провода в хлопчатобумажной оплетке присоединить к одному из контактов катушки (рисунок 11), потоки, исходящие по всей длине провода, будут настолько сильными, что послужат значительным источником света. Когда потенциалы и частота очень высоки, провод, изолированный гуттаперчей или резиной и присоединенный к одному из контактов, кажется покрытым светящейся пленкой. Очень тонкий неизолированный провод, присоединенный к контакту, излучает сильные потоки и постоянно вибрирует или совершает круговые движения, производя потрясающий эффект (рисунок 12). Некоторые из этих опытов я описал в журнале «The Electrical World» от 21 февраля 1891 года.
Еще одна особенность высокочастотного разряда катушки индуктивности — ее абсолютно иное поведение при использовании острых контактов и округлых поверхностей.
Если толстый провод, у которого на одном конце шарик, а на другом — острый конец, присоединить к положительному полюсу статической машины, практически весь заряд уйдет с острого конца по причине очень высокого напряжения, которое зависит от радиуса изгиба. Но если такой провод присоединить к одному из контактов катушки, мы заметим, что при высокой частоте потоки испускаются из шара идентично потокам из острого конца (рисунок 13).
Трудно себе представить, что мы могли бы создать почти такие же условия и в статической машине, по той простой причине, что напряжение возрастает пропорционально квадрату плотности, которая, в свою очередь, пропорциональна радиусу изгиба; следовательно, при постоянном потенциале потребуется огромный заряд для того, чтобы потоки испускались шлифованным шаром в то время, как он соединен с острым концом. Но ситуация меняется на катушке индуктивности, чей разряд меняет направление с огромной скоростью. Здесь мы сталкиваемся с двумя ярко выраженными тенденциями. Во-первых, есть тенденция к испусканию, которая существует в состоянии покоя и которая зависит от радиуса изгиба; во-вторых, есть тенденция рассеивания в окружающем воздухе, которая зависит от поверхности. Когда одна из этих тенденций максимальна, вторая — минимальна. На остром конце образование светящегося потока в целом объясняется тем, что молекулы воздуха физически контактируют с проводником; они притягиваются и отталкиваются, приобретают и теряют заряд и таким образом возбуждаются их атомные заряды, они вибрируют и испускают световые волны. В случае с шаром, напротив, без сомнения, этот эффект достигается индуктивно, причем необязательно, что молекулы воздуха соприкасаются с шаром, хотя, конечно, это происходит. Чтобы убедиться в этом, нам надо усилить эффект конденсатора, окружив шар на определенном расстоянии лучшим проводником, чем окружающая среда, конечно, заизолировав этот проводник, либо, обернув его лучшим диэлектриком, поднести к изолированному проводнику; в обоих случаях потоки будут испускаться идентично. И еще — чем больше шар при заданной частоте, или чем выше частота, тем большее преимущество будет иметь шар перед острым концом. Но поскольку для этого опыта требуется определенное напряжение, для того чтобы видеть исходящие потоки, очевидно, что в описанном опыте шар не должен быть слишком большим.
Вследствие этой двоякой тенденции при помощи острых контактов возможно производить явления, идентичные тем, что производятся при помощи емкости. Так, например, присоединив к одному из контактов катушки короткий витой провод, имеющий много концов и дающий много исходящих потоков, можно увеличить потенциал катушки так же, как если бы присоединили в контакту катушки шлифованный шар, поверхность которого во много раз больше.
Интересный опыт, демонстрирующий эффект острых концов, можно провести следующим образом. Присоедините к одному из выводов катушки провод длиной около двух футов, изолированный хлопчатобумажным материалом, и задайте такие параметры работы, чтобы началось испускание потоков из провода. При проведении этого опыта первичную катушку надо располагать так, чтобы она только наполовину пересекалась со вторичной. Теперь прикоснитесь к свободному выводу вторичной обмотки проводником, зажатым в руке, или присоедините к нему иной изолированный предмет какого-либо размера. Таким образом потенциал на проводе можно резко увеличить. Следствием этого будет увеличение или уменьшение потоков. Если они увеличатся, то провод слишком короткий; если уменьшатся — слишком длинный. Регулируя длину провода можно найти такой момент, когда прикосновение к другому выводу катушки не оказывает влияния на потоки. В этом случае усиление потенциала компенсируется падением потенциала в обмотке. Было отмечено, что короткие провода значительно влияют на количество и яркость потоков. Первичная обмотка отстраняется по двум причинам: во-первых, чтобы увеличить потенциал на проводе; во-вторых, чтобы увеличить падение потенциала на катушке. Так повышается чувствительность.
Есть и еще одна более удивительная особенность пучкового разряда, производимого высокочастотными токами. Для ее наблюдения лучше выполнить обычные выводы катушки в виде металлических штырей, хорошо изолированных эбонитом. Не лишним также будет, если вы изолируете воском или сургучом все трещины и надломы так, чтобы пучки не могли формироваться нигде, кроме вершин штырей. Если соблюдены все условия — а это мы, конечно, оставим на усмотрение экспериментатора — и потенциал вырос до огромного значения, то мы можем получить мощные пучки длиной несколько дюймов почти белые у основания, которые в темноте выглядят как две струи горящего под давлением газа (рисунок 14). Но они не только напоминают пламя, это и есть пламя, поскольку пучки горячие. Конечно, не настолько горячие, как газ, но они могут быть такими, если частота и потенциал будут достаточно высоки. При частоте, скажем, двадцать тысяч колебаний в секунду, тепло ощущается, даже если потенциал не очень велик. Теплота выделяется, конечно, благодаря тому, что молекулы воздуха ударяются о выводы катушки и друг о друга. Так как при нормальном давлении средняя длина свободного движения крайне мала, то, возможно, несмотря на огромную начальную скорость, полученную каждой молекулой при столкновении с контактом, ее продвижение — вследствие столкновения с другими молекулами — затрудняется настолько, что она, не удаляясь от контакта, может ударяться о него много раз подряд. Чем больше частота, тем меньше у молекулы возможностей удалиться, тем более что для такого явления не нужен высокий потенциал; необходима частота — может быть, ее можно даже получить, — при которой одни и те же молекулы будут ударяться о контакт. При таких условиях молекулярный обмен замедляется, и тепло, выделяемое на контакте и возле него, будет сильным. Но если частота будет постоянно возрастать, то количество выделяемого тепла будет уменьшаться по очевидным причинам. В положительном пучке статической машины молекулярный обмен очень быстр, поток всегда движется в одном направлении, столкновений меньше, отсюда теплоотдача должна быть низкой. Всё, что тормозит молекулярный обмен, имеет тенденцию повышать теплоотдачу. Так, если к выводу катушки поднести лампочку, то воздух, содержащийся внутри нее, очень быстро и сильно нагревается. Если к выводу поднести стеклянную трубку так, чтобы поток воздуха поднимал пучок вверх, то из трубки будет вырываться обжигающе горячий воздух. Всё, что попадает в пучок, конечно, быстро нагревается, и появляется возможность использовать этот эффект нагревания для каких-либо целей.