В модели Больцмана атомы или молекулы двигались по газу, сталкиваясь друг с другом; для простоты он рассматривал столкновения только между двумя атомами и игнорировал (как менее частые) столкновения между тремя или более. Предположение Больцмана состояло в том, что до столкновения скорости атомов не были связаны между собой; то есть они были абсолютно случайными. Иначе дело обстояло после столкновения, поскольку направление, в котором двигалась одна из молекул, зависело от той молекулы, с которой она столкнулась. Это предположение вызывало временною асимметрию в математическом анализе, поскольку при нем можно было разделить прошлое (где не было связи) и будущее, что в свою очередь являлось причиной временно-асимметричного результата, каковым и является второе начало. Тот факт, что в чем-то настолько тривиальном скрывается секрет термодинамической необратимости, иллюстрирует утонченность и сложность идей, на которых держится теоретическая физика.
Скорости случайны до столкновения, но связаны между собой после него. Для большей ясности математика упрощена, как будто речь идет о столкновении водном измерении.
После пояснения всех гипотез можно прокомментировать первый значительный результат статьи, что позднее стало известно как "уравнение Больцмана". В нем было описание эволюции функции распределения на основе различных факторов, которые могли повлиять на нее. Он доказал, что изменение в функции распределения обязано только действию внешних сил, столкновениям между молекулами и диффузией; под последней Больцман понимал статистическую тенденцию находящихся в определенной области частиц распространяться до заполнения всего разрешенного объема.
УРАВНЕНИЕ БОЛЬЦМАНА
В самом простом виде уравнение может быть записано так:
В этом случае f представляет собой функцию распределения. Член слева — ее производная относительно времени, она показывает изменение f с его течением; член справа — изменение f, вызванное силами, диффузией и столкновениями. Уравнение Больцмана утверждает, что любое изменение в f должно быть вызвано как минимум одной из этих трех причин. Уравнение, приведенное в статье 1872 года, гораздо сложнее, поскольку Больцман не довольствовался его представлением вне развития, вычислил вклад каждого члена и пришел к интегрально-дифференциальному уравнению, которое вначале было невозможно решить. Он рассмотрел изменение функции распределения, вызванное столкновением двух молекул, которые исходно имели некоторую энергию, а в итоге другую, отличную от нее. Его использование переменных нехарактерно для сегодняшнего дня: для начальной энергии двух молекул он оперировал буквами х и х'; для энергии после столкновения — буквами ξ и выражением х + х' - ξ, поскольку конечная энергия второй частицы равна разности между общей энергией пары до столкновения и энергией, которую получает на выходе первая молекула. Конечное уравнение имело следующий вид:
Изменение времени в функции распределения (левая сторона) задано результатом действия сил, диффузии и столкновений (правая сторона) при сложении всех возможных состояний энергии всех частиц газа.
Воспользовавшись гипотезой молекулярного хаоса, Больцман смог трансформировать уравнение от общего (и поэтому менее полезного) вида к другому, более ясному, где для начала можно было вычислить решение. Полученное им уравнение оказалось очень мощным, и сегодня оно все еще используется для вычисления явлений, характерных для газов вне равновесия. Его также можно использовать в таких дисциплинах, как теория тяготения или электроника.
Больцман не смог или не захотел решить свое уравнение. Однако он воспользовался им для того, чтобы получить ряд результатов, благодаря которым его имя попало в историю науки. Он показал, что распределение Максвелла — решение его уравнения. Это было не то же самое, что привести общее решение, он ограничился констатацией: при вставке распределения Максвелла на место ƒ уравнение выполняется. Затем он доказал, что едва становится возможным описать систему с помощью распределения Максвелла, уже нельзя произвести никакое изменение. "Как только дело дойдет до этого распределения, на него не будут влиять столкновения"; то есть если любой газ каким-либо образом придет к распределению Максвелла, то внутренним столкновениям между молекулами уже не удастся изменить его состояние.
Следующий результат был еще более важным. Используя свое уравнение, он доказал, что если распределение газа не имеет форму Максвелла, с течением времени оно с каждым разом будет все больше приближаться к нему. То есть любой газ в любом состоянии будет стремиться приблизиться к распределению Максвелла и, как только достигнет его, останется в этом состоянии. Так Больцману удалось дать строгое обоснование распределению Максвелла и доказать, что любой газ должен быть описан с его помощью. Так результат, полученный на основе предположения, что газ ведет себя согласно уравнению Максвелла, автоматически оказывается справедливым.
Форма распределения Максвелла, которой воспользовался Больцман, была более общей, чем у его коллеги, и была выведена более строго. Поэтому сегодня оно известно как "распределение Больцмана", хотя иногда имя Максвелла также включается, чтобы подчеркнуть его роль в открытии. Несмотря на значение этого результата, еще более удивительным был метод, которым воспользовался австрийский ученый, чтобы обосновать его, и это привело к окончательному доказательству того, что второе начало происходит из принципов механики. Его результат сегодня известен как Н-теорема.
Больцман исходил из только что предложенного уравнения и сосредоточился на величине, связанной со средним значением функции распределения. Он брал среднее значение ее логарифма, то есть операции, обратной возведению в степень, окрестив это среднее значение "Н" (хотя в оригинальной статье по неизвестной причине назвал ее "Е"), и доказал, что если его уравнение справедливо, то Н должна оставаться одинаковой или уменьшаться для любого физического процесса. Вспомним, что энтропия имеет тенденцию оставаться одинаковой или увеличиваться. Итак, Больцману надо было только поменять знак функции Н, чтобы найти механический эквивалент энтропии, с теми же самыми свойствами, что у ее термодинамического двойника. В своей статье Больцман утверждал:
"Так как Е тесно связано с термодинамической энтропией в конечном состоянии равновесия, наш результат равносилен доказательству того, что энтропия должна всегда расти или оставаться постоянной, и, следовательно, он представляет собой микроскопическое толкование второго начала термодинамики".
Определение энтропии Клаузиуса справедливо только для систем в равновесии и неспособно дать последовательного значения для систем, которые не находятся в нем; принимая во внимание, что Больцман не оговаривал отдельно эти обстоятельства, его определение было справедливо для любой ситуации. То есть Больцману не только удалось вывести формулу энтропии из самых базовых принципов, он еще и распространил ее дальше собственной области применения. Сегодня физическое сообщество располагает определениями энтропии, которые справедливы в квантовых и релятивистских системах.
Большое отличие статьи 1872 года от статей 1860-х годов заключено в открытом использовании вероятности. С самого начала Больцман утверждал, что "проблемы механической теории тепла — на самом деле проблемы вычисления вероятностей". Из-за огромного количества частиц газа единственные данные, которые можно получить экспериментальным способом, — это средние значения. Итак, если нужно понять макроскопическое поведение газа, нужно сосредоточиться на статистическом подходе к молекулам, которые его образуют.
Что любопытно, факт использования вычисления вероятностей, казалось, не вызывает у Больцмана никаких сомнений в справедливости его гипотез. Несмотря на то что в его время теория вероятностей считалась чем-то малодостоверным (этот предрассудок все еще жив в некоторых научных кругах), Больцман утверждал, что результаты, полученные с ее помощью, будут такими же точными, как и результаты, достигнутые в любой другой области физики. Поэтому сложно представить себе, что Больцман тогда осознавал, что у его второго начала могут быть исключения. Очень вероятно, что его напор в отношении непогрешимости начала, которое он подтвердил, стал причиной его проблем в будущем, когда его критики доказали: в некоторых специфических случаях энтропия должна уменьшаться. Больцман в итоге понял ошибку и незаметно изменил свою позицию в статье, опубликованной в 1877 году.