Рейтинговые книги
Читем онлайн Удивительная логика - Дмитрий Гусев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 45

Далее следует ответить на вопрос, к каким суждениям – общим или частным – следует относить суждения с единичным объемом субъекта (т. е. те суждения, в которых субъект представляет собой единичное понятие), например: Солнце – это небесное тело, Москва основана в 1147 году, Антарктида – это один из материков Земли. Суждение является общим, если речь в нем идет обо всем объеме субъекта, и частным, если речь идет о части объема субъекта. В суждениях с единичным объемом субъекта речь идет обо всем объеме субъекта (в приведенных примерах – обо всем Солнце, обо всей Москве, обо всей Антарктиде). Таким образом, суждения, в которых субъект является единичным понятием, считаются общими (общеутвердительными или общеотрицательными). Так, три приведенных выше суждения – общеутвердительные, а суждение Известный итальянский ученый эпохи Возрождения Галилео Галилей не является автором теории электромагнитного поля – общеотрицательное.

В дальнейшем будем говорить о видах простых суждений, не употребляя их длинных названий, с помощью условных обозначений – латинских букв А, I, Е, О. Эти буквы, взятые из двух латинских слов: affirmo – «утверждать» и nego – «отрицать», были предложены в качестве обозначения видов простых суждений еще в Средние века.

Важно отметить, что в каждом из видов простых суждений субъект и предикат находятся в определенных отношениях. Так, общий объем субъекта и утвердительная связка суждений вида А приводят к тому, что в них субъект и предикат могут находиться в отношениях равнозначности или подчинения (других отношений между субъектом и предикатом в суждениях вида А быть не может). Например, в суждении Все квадраты (S) – это равносторонние прямоугольники (Р) субъект и предикат находятся в отношении равнозначности, а в суждении Все киты (S) – это млекопитающие животные (Р) – в отношении подчинения.

Частный объем субъекта и утвердительная связка суждений вида I обусловливают то, что в них субъект и предикат могут находиться в отношениях пересечения или подчинения (но не в других). Например, в суждении Некоторые спортсмены (S) – это негры (Р) субъект и предикат находятся в отношении пересечения, а в суждении Некоторые деревья (S) – это сосны (Р) – в отношении подчинения.

Общий объем субъекта и отрицательная связка суждений вида Е приводят к тому, что в них субъект и предикат находятся только в отношении несовместимости. Например, субъект и предикат несовместимы в суждениях Все киты (S) – это не рыбы (Р), Все планеты (S) не являются звездами (Р), Все треугольники (S) – это не квадраты (Р).

Частный объем субъекта и отрицательная связка суждений вида О обусловливают то, что в них субъект и предикат, так же как и в суждениях вида I, могут быть только в отношениях пересечения и подчинения. Например, в суждении Некоторые студенты (S) не являются спортсменами (Р) субъект и предикат находятся в отношении пересечения, а в суждении Некоторые геометрические фигуры (S) не являются треугольниками (Р) субъект и предикат находятся в отношении подчинения.

Обо всем или о части (Распределенность терминов в простых суждениях)

Терминами суждения называются его субъект и предикат.

Термин считается распределенным (развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина. Распределенный термин обозначается знаком «+», а на схемах Эйлера изображается полным кругом (кругом, который не содержит в себе другого круга и не пересекается с другим кругом) (рис. 22).

Термин считается нераспределенным (неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина. Нераспределенный термин обозначается знаком «—», а на схемах Эйлера изображается неполным кругом (кругом, который содержит в себе другой круг (рис. 23а) или пересекается с другим кругом (рис. 23б).

Например, в суждении Все акулы (S) являются хищниками (Р) речь идет обо всех акулах, значит, субъект этого суждения распределен. Однако в данном суждении речь идет не обо всех хищниках, а только о части хищников (именно о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределен. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения схемами Эйлера, увидим, что распределенному термину (субъекту акулы) соответствует полный круг, а нераспределенному (предикату хищники) – неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть) (рис. 24).

Распределенность терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом.

Проще всего устанавливать распределенность терминов в простых суждениях с помощью схем Эйлера. Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами. Далее еще проще – полный круг, как уже говорилось, соответствует распределенному термину, а неполный – нераспределенному. Например, требуется установить распределенность терминов в суждении Некоторые русские писатели – это всемирно известные люди. Сначала найдем в этом суждении субъект и предикат: русские писатели – субъект, всемирно известные люди – предикат. Теперь установим, в каком отношении они находятся. Русский писатель может как быть, так и не быть всемирно известным человеком, и всемирно известный человек может как быть, так и не быть русским писателем, следовательно, субъект и предикат указанного суждения находятся в отношении пересечения. Изобразим это отношение на схеме Эйлера, заштриховав ту часть, о которой идет речь в суждении (рис. 25).

И субъект, и предикат изображаются неполными кругами (у каждого из них как бы отрезана какая-то часть), следовательно, оба термина предложенного суждения нераспределены (S —, Р —).

Рассмотрим еще один пример. Надо установить распределенность терминов в суждении Некоторые люди – это спортсмены. Найдя в этом суждении субъект и предикат (люди – субъект, спортсмены – предикат) и установив отношение между ними (подчинение), изобразим его на схеме Эйлера, заштриховав ту часть, о которой идет речь в суждении (рис. 26).

Круг, обозначающий предикат, является полным, а круг, соответствующий субъекту, – неполным (круг предиката как бы вырезает из него какую-то часть). Таким образом, в данном суждении субъект нераспределен, а предикат распределен (S —, Р +).

Все не рыбы не являются карасями (Способы преобразования простых суждений)

Существует три способа преобразования, т. е. изменения формы, простых суждений: обращение, превращение и противопоставление предикату.

Обращение – это преобразование простого суждения, при котором субъект и предикат меняются местами. Например, суждение Все акулы являются рыбами преобразуется путем обращения в суждение Некоторые рыбы являются акулами. Здесь может возникнуть вопрос, почему исходное суждение начинается с квантора все, а новое – с квантора некоторые! Этот вопрос на первый взгляд кажется странным, ведь нельзя же сказать Все рыбы являются акулами, следовательно, единственное, что остается, это Некоторые рыбы являются акулами. Однако в данном случае мы обратились к содержанию суждения и по смыслу поменяли квантор все на квантор некоторые; а логика, как уже говорилось, отвлекается от содержания мышления и занимается только его формой. Поэтому обращение суждения Все акулы являются рыбами можно выполнить формально, не обращаясь к его содержанию (смыслу). Для этого установим распределенность терминов в этом суждении с помощью круговой схемы. Термины суждения, т. е. субъект акулы и предикат рыбы, находятся в данном случае в отношении подчинения (рис. 27).

На круговой схеме видно, что субъект распределен (полный круг), а предикат нераспределен (неполный круг). Вспомним, что термин распределен, когда речь идет обо всех входящих в него предметах, и нераспределен, когда – не обо всех, и автоматически мысленно поставим перед термином акулы квантор все, а перед термином рыбы – квантор некоторые. Делая обращение указанного суждения, т. е. меняя местами его субъект и предикат и начиная новое суждение с термина рыбы, мы опять же автоматически снабжаем его квантором некоторые, не задумываясь о содержании исходного и нового суждений, и получаем безошибочный вариант: Некоторые рыбы являются акулами.

1 ... 7 8 9 10 11 12 13 14 15 ... 45
На этой странице вы можете бесплатно читать книгу Удивительная логика - Дмитрий Гусев бесплатно.
Похожие на Удивительная логика - Дмитрий Гусев книги

Оставить комментарий