для одномоментной компенсации во время посадки. Это позволяет удешевить компенсационное оборудование и уменьшить его габариты.
В настоящее описываемому время вышеописанные технологии считаются устаревшими и используются только как вспомогательные. Вместо них входу две иных, действительно эффективно обеспечивающих постоянную компенсацию кинетики: «воздушная компенсация» и «антигравитационная компенсация». Первая чрезвычайно проста, практически не требует никакого дополнительного оборудования, но может применяться только на невысотных аэромашинах, рассчитанных на полёты в плотных слоях атмосферы. Суть её в следующем: летательный аппарат снабжается сквозными воздуховодами, проходящими от его передней части к задней, причём на их торцах антигравитационный экран организуется иначе, чем по всей остальной поверхности корпуса, здесь антигравитационное поле достаточно глубоко выходит за края экрана, закрывая входное и выходное отверстия воздуховода целиком. Таким образом внутренняя часть последнего становится тоже гравитационно отделённой от забортного пространства, как и весь остальной аппарат, а вот физически она остаётся не отделена, ведь поля не являются препятствием для физических тел. Смысл в том, чтобы во время полёта воздух постоянно попадал извне в воздуховод, проходил сквозь оный и выходил наружу. Пока он внутри, он подвергается воздействию антигравитации, соответственно теряя большую часть массы, а вектор кинетической энергии этой потерянной массы складывается с вектором кинетической энергии остальной скрытой массы, принадлежащей самому аппарату. Так как наружная воздушная среда практически не имеет никакой раскомпенсированности кинетики с местностью, над которой находится, подобное сложение на очень малую величину, равную суммарному весу молекул газов воздуха в воздуховоде, но изменяет общую раскомпенсированность кинетики транспортного средства, делая её меньше для данной геопозиции. Молекулы же приобретают эту потерянную часть раскомпенсированности, далее они выходят наружу за пределы действия антигравитации и просто рассеиваются в атмосфере. С учётом скорости аэромашин, за секунду даже сквозь скромных размеров воздуховоды могут проходить десятки тысяч литров воздуха, а при нормальной плотности литр воздуха весит примерно 1,3 грамма. То есть за секунду летательный аппарат способен пропустить сквозь себя десятки его килограмм. Этого достаточно для эффективной компенсации кинетики. Системы выравнивания кинетики, основанные на подобном принципе частичного обмена массой с внешней средой, называют «Системами Кинетической Компенсации с Разомкнутым Контуром» (РСКК). Помимо низкого потолка высот к их явным недостаткам относят невозможность полной нейтрализации кинетической раскомпенсированности до нулевых значений из-за подвижности воздушных масс (т.е. ветров, восходящих и нисходящих воздушных потоков) и снижение эффективности технических систем, служащих для уменьшения сопротивления воздуха. Впрочем, последние два изъяна нивелируются достаточно легко, без необходимости применения сложного дорогостоящего оборудования, посему практически не сказываются на главном достоинстве РСКК – чрезвычайно малой стоимости. Что касается ограниченной высотности, это скорее свойство РСКК, а не нуждающаяся в разрешении проблема. Из-за низкого потолка высот РСКК могут применяться лишь на флаерах и дропперах (о видах летательных аппаратов см. раздел о транспорте). Основными техническими характеристиками РСКК служат:
• Кинетическое смещение – максимальная величина (м/с), которой может достигать раскомпенсированность кинетики во время полёта. Существуют имперские стандарты, задающие допустимые величины кинетического смещения при передвижении в тех или иных средах (под средой конечно же подразумевается атмосфера, просто она бывает разной, так как её состав и плотность у всех планет хоть сколько-то да не совпадают).
• Объём контура (литров) – внутренний объём воздуховода РСКК. У серийных флаеров конвейерной сборки как правило составляет от 250 до 500 литров. Часто данную характеристику заменяют аналогичной, где воздух измеряют не в литрах, а в граммах веса воздуха соответствующего объёма при его нормальной плотности; в этом случае её называют не объёмом, а «массой контура». Объёмам от 250 до 500 литров соответствуют массы от 330 до 660 грамм. Объём контура – более универсальная величина, ведь при разных составах атмосферы вес воздуха будет отличаться, то есть для одного и того же аэротранспорта значение массы контура на разных планетах окажется разным, тогда как объём характеризует именно РСКК конкретного летательного аппарата и ни от каких внешних условий не зависит. Тем не менее в силу традиций обыватель предпочитает в качестве меры воздуховода РСКК использовать именно массу. А вот в среде технических специалистов напротив, предпочтение отдаётся исключительно объёму – тот, кто при технарях-авиамеханиках заговорит о «массе контура», сразу выставит себя в их глазах профаном.
Системы компенсации кинетики, основанные на втором виде технологий, в противоположность РСКК называют «Системами Кинетической Компенсации с Замкнутым Контуром» (ЗСКК). Никаких воздуховодов в них не применяется, их функционирование базируется на антигравитации (в первую очередь на антигравитации проекцией массы, о которой см. ниже). Они неизменно очень сложны инженерно-технически, и в плане дороговизны мало чем уступают любому другому антигравитационному оборудованию, например формирующему экран, а порой и превосходят его. Однако для антигравитационного транспорта, рассчитанного на полёты в разряженной атмосфере или космосе, альтернативы им нет – каждое подобное транспортное средство, от лёгкого высотного аэромобиля до огромного космического лайнера тяжестью в миллион тонн, оснащено ими. ЗСКК могут радикально отличаться и по стоимости, и видом технической реализации механизма компенсации, одни построены на применении кинетических пушек, другие на поглощении энергии посредством электромагнитных ускорителей, третьи используют различные технологии трансформации масс, четвёртые базируются на кинетическом преобразовании плазмы, пятые – на эффекте кинетической инфляции в условиях точечного искажения пространства, шестые на лучевых воздействиях, и т.д., но всегда в основе каждого механизма компенсации лежат антигравитационные технологии и потому всегда оснащение летательного аппарата ЗСКК заметным образом сказывается на его конечной цене (для аэромобилей, к примеру, комплектация их ЗСКК обычно приводит к их удорожанию не менее чем на 20%). Помимо стоимости, прочих недостатков у ЗСКК не наблюдается. Они не зависят от условий внешней среды, они абсолютно комфортны, не являясь источником каких-либо негативных ощущений для пассажиров, они могут очень тонко и быстро устранять раскомпенсированность кинетики вплоть до нулевых значений, и хотя в отличие от РСКК это требует определённых энергетических затрат, последние вполне естественны для всякого изменения скорости любого тела, и следовательно считать их недостаткам именно ЗСКК не слишком уместно (тогда уж надо говорить о них, как об изъяне самой природы и её физических законов).
Проекционная антигравитация
Действие «антигравитации проекцией массы», или иначе «проекционной антигравитации», основано на искажении гравитационного поля системы близкорасположенных тел таким образом, чтобы оно фокусировалось в определённой точке системы, и соответственно ослаблялось в прочих её областях. В результате «точка фокусировки» как бы принимает массу от всех остальных частей системы, она утяжеляется, а они становятся легче суммарно на ту же величину. Общая масса системы при этом, естественно, не меняется. Базовые постулаты проекционной теории гласят следующее:
• Для всякой