Числа
называются структурными константами группы Ли, и к изучению их полностью сводится изучение группы Ли.
Лит.: Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973 (имеется библ.).
Л. С. Понтрягин.
Непрерывная дробь
Непреры'вная дробь, цепная дробь, один из важнейших способов представления чисел и функций. Н. д. есть выражение вида
где a 0 — любое целое число, a 1 , a2 ,..., an ,... — натуральные числа, называемые неполными частными, или элементами, данной Н. д. К Н. д., изображающей некоторое число a, можно прийти, записывая это число в виде
где a 0 — целое число и 0 < 1/a1 < 1, затем, записывая в таком же виде a1 и т. д. Число элементов Н. д. может быть конечным или бесконечным; в зависимости от этого Н. д. называют конечной или бесконечной. Н. д. (1) часто символически обозначают так:
[а 0 ; a 1 , a 2 ,..., an ,... ] (бесконечная Н. д.) (2)
или
[а 0 ; а 1 , a 2 ,..., a n ] (конечная Н. д.). (3)
Конечная Н. д. всегда представляет собой рациональное число; обратно, каждое рациональное число может быть представлено в виде конечной Н. д. (3); такое представление единственно, если потребовать, чтобы a n ¹ 1. Н. д. [а 0 ; a 1 , a 2 ,..., a k ] (k £ n ), записанную в виде несократимой дроби pk /qk , называют подходящей дробью порядка k данной Н. д. (2). Числители и знаменатели подходящих дробей связаны рекуррентными формулами:
pk +1 = ak +1 pk + pk -1 , qk +1 = ak +1 qk + qk -1 ,
которые служат основанием всей теории Н. д. Из этих формул непосредственно вытекает важное соотношение
pk qk -1 — qk pk- 1 = ± 1.
Для каждой бесконечной Н. д. существует предел
называемый значением данной Н. д. Каждое иррациональное число является значением единственной бесконечной Н. д., получаемой разложением a указанным выше образом, например
(е — 1)/2 = [0, 1,6, 10,14, 18,...];
квадратичные иррациональности разлагаются в периодические Н. д.
Основное значение Н. д. для приложений заключается в том, что подходящие дроби являются наилучшими приближениями числа a, то есть, что для любой другой дроби m /n, знаменатель которой не более gk имеет место неравенство |n a — m | > |gk a — pk l; при этом |qk . — pk | < 1/qk+ 1 . Нечётные подходящие дроби больше a, а чётные — меньше. При возрастании k нечётные подходящие дроби убывают, а чётные возрастают.
Н. д. используются для приближения иррациональных чисел рациональными. Например, известные приближения 22 /7 , 355 /113 для числа p (отношения длины окружности к диаметру) суть подходящие дроби для разложения p в Н. д. Следует отметить, что первое доказательство иррациональности чисел е и p было дано в 1766 немецким математиком И. Ламбертом с помощью Н. д. Французский математик Ж. Лиувилль доказал: для любого алгебраического числа a степени n можно найти такую постоянную l, что для любой дроби x /y выполняется неравенство |a — x /y | > l/у n . С помощью Н. д. можно построить числа a такие, что разность |a — pk /qk | делается меньше a/gk , какую бы постоянную l мы ни взяли. Так, используя Н. д., можно строить трансцендентные числа. Недостатком Н. д. является чрезвычайная трудность арифметических действий над ними, равносильная практической невозможности этих действий; например, зная элементы двух дробей, мы не можем сколько-нибудь просто получить элементы их суммы или произведения.
Н. д. встречаются уже в 16 в. у Р. Бомбелли . В 17 в. Н. д. изучал Дж. Валлис ; ряд важных свойств Н. д. открыл Х. Гюйгенс , занимавшийся ими в связи с теорией зубчатых колёс. Многое сделал для теории Н. д. Л. Эйлер в 18 в.
В 19 в. П. Л. Чебышев , А. А. Марков и др. применили Н. д., элементами которых являются многочлены, к изучению ортогональных многочленов .
Лит.: Чебышев П. Л., Полное собрание сочинений, 2 изд., т. 1, М. — Л., 1946; Хинчин А. Я., Цепные дроби, 2 изд., М. — Л., 1949; Эйлер Л., Введение в анализ бесконечно малых, пер. с лат., т. 1, М. — Л., 1936; Стилтьес Т. И., Исследования о непрерывных дробях, пер. с франц., Хар. — К., 1936; Perron О., Die Lehre von den Kettenbrüchen, 2 Aufl., Lpz. — B., 1929; Wall Н. S., Analytic theory of continued fractions, Toronto — N. Y. — L., 1948.
Непрерывная разливка стали
Непреры'вная разли'вка ста'ли, процесс получения из жидкой стали слитков-заготовок (для прокатки, ковки или прессования), формируемых непрерывно по мере поступления жидкого металла с одной стороны изложницы-кристаллизатора и удаления частично затвердевшей заготовки с противоположной стороны.
Н. р. с. имеет следующие преимущества перед обычной разливкой: на 10—15% сокращается расход металла на 1 т годного проката вследствие уменьшения обрези головной и донной частей заготовки; сокращаются капитальные затраты на сооружение металлургического завода, так как исключаются парк чугунных изложниц, отделения для их подготовки и извлечения слитков из изложниц, дорогостоящие блюминги или слябинги , на которых крупные слитки обжимаются в заготовку для последующей прокатки; создаются условия для полной механизации и автоматизации процесса разливки; благодаря ускорению затвердевания повышается степень однородности металла, улучшается его качество.
Способ получения продукции непосредственно из жидкого металла (так называемая бесслитковая прокатка ) был предложен в 1855 Г. Бессемером . Экспериментальные работы, проведённые в этой области в ряде стран, не дали положительных результатов. Более перспективным оказался способ получения из жидкого металла не готового изделия, а промежуточной заготовки с размерами, как правило, меньшими, чем при отливке в изложницу. В 30-х гг. 20 в. начало развиваться непрерывное литьё через водоохлаждаемую изложницу-кристаллизатор заготовок из цветных металлов и сплавов, главным образом алюминиевых и медных. Стальные заготовки таким методом были впервые получены З. Юнгансом (Германия) в 1939. В СССР работы по освоению Н. р. с. были начаты в 1944, а в 1955 на Горьковском заводе «Красное Сормово» введена в эксплуатацию первая промышленная установка Н. р. с. (УНРС). В 1973 в СССР на 21 заводе имелось 36 УНРС; во всём мире работает свыше 500 УНРС (1973). Кроме СССР, большое распространение этот способ получил в США, Японии, ФРГ и Италии.
При Н. р. с. жидкий металл поступает в сквозную изложницу-кристаллизатор (рис. 1 ). Стенки кристаллизатора (изготовляемого обычно из меди) интенсивно охлаждаются водой, циркулирующей по имеющимся в них каналам. В начале процесса в кристаллизатор вводится временное дно — так называемая затравка. Металл затвердевает у стенок кристаллизатора и у затравки, и оболочка заготовки начинает извлекаться из кристаллизатора с заданной скоростью. Сверху в кристаллизатор непрерывно подаётся жидкий металл в таком количестве, чтобы его уровень был постоянным в процессе всей разливки. Для уменьшения усилий вытягивания кристаллизатору сообщается возвратно-поступательное движение по продольной оси, а на его стенки подаётся смазка. Поверхность жидкого металла предохраняется от окисления слоем синтетического шлака или защитной атмосферой из инертного газа. Выходящая из кристаллизатора заготовка с жидкой сердцевиной попадает в зону вторичного охлаждения, где на её поверхность подаётся из форсунок распылённая вода. После затвердевания по всему сечению заготовка разрезается на части требуемой длины. Расстояние L (м ) от уровня металла в кристаллизаторе до места, где заканчивается кристаллизация заготовки толщиной а (м ), отливаемой со скоростью v (м/мин ), равно: L = (240—340) a 2 ×v. Значение коэффициента пропорциональности зависит от профиля и размера заготовки и от марки разливаемой стали.