Первый успех был достигнут английским теоретиком Р. Пенроузом. Он показал, что при сжатии реального несферического тела внутри образовавшейся черной дыры неизбежно возникает сингулярность, то есть область с бесконечными приливными силами тяготения.
Невозможность избежать возникновения сингулярности внутри черной дыры, как показал Р. Пенроуз, следует, по существу, из факта невозможности начертить на бумаге карту всей сферической Земли так, чтобы все точки, близкие на поверхности Земли, были близки и на карте. Мы знаем, что на единой карте мира мыс Дежнева, например, и Аляска часто изображаются на противоположных концах карты, а в действительности они рядом. Вот к этому хорошо знакомому факту Р. Пенроуз остроумно и свел доказательство.
Но обязательно ли все тела, упавшие в реальную черную дыру, упадут и в сингулярность? Много теоретиков пыталось разобраться в этом. Мы начинали решать эту проблему вместе с А. Дорошкевичем в середине 70-х годов, затем работали над ней с молодым физиком А. Старобинским и американскими теоретиками. Теперь этот вопрос в основном исчерпан — удалось доказать, что падение в сингулярность неизбежно.
Напомним еще раз, что о всех событиях, протекающих внутри черной дыры, наблюдатель, оставшийся вне ее, знает, так сказать, только теоретически. Он не может получить о них никаких сведений, никаких сигналов из-под горизонта черной дыры. Вот как поэтично говорит об этом знаменитый индийский физик, живущий в США, лауреат Нобелевской премии С. Чандрасекхар: «Исследуя явления, связанные с горизонтами событий и невозможностью передавать через них информацию, я часто повторял про себя сказку о природе, которую слышал в Индии лет пятьдесят назад. Сказка эта называлась «Не потерялась, а просто исчезла» и повествовала о личинках стрекоз, живущих на дне пруда. Их постоянно мучила одна загадка: что происходит с ними, когда, став взрослыми, они поднимаются к поверхности пруда, проходят через нее и исчезают, чтобы больше никогда не вернуться? Каждая личинка, ставшая взрослой и готовящаяся подняться наверх, обязательно обещает вернуться и рассказать оставшимся внизу подругам о том, что же происходит наверху. Ведь только так удастся подтвердить или опровергнуть слухи, распространенные лягушкой: будто бы личинка, пересекающая поверхность пруда и оказавшаяся по другую сторону привычного мира, превращается в удивительное существо с длинным стройным телом и сверкающими крыльями. Но, выйдя из воды, личинка превращается в стрекозу, которая, увы, не может проникнуть под поверхность пруда, сколько бы она ни пыталась и как бы долго ни парила над его зеркальной поверхностью. И в летописи, которую ведут личинки, нет ни одной строки о личинке, которая возвратилась бы и рассказала, что же происходит с теми, которые пересекали границу их мира. И сказка оканчивается жалобой: «Неужели ни одна из нас, хотя бы из жалости к тем, кого мы бросили внизу, не вернется и не раскроет секрет?»
Нет ничего проще и сложнее, чем черные дыры
Итак, мы познакомились с физикой черных дыр, с тем, что происходит в их окрестностях и что может происходить внутри самих дыр. Читатель, наверное, согласится с тем, что черные дыры — совершенно исключительные объекты, не похожие ни на что, известное до сих пор. Это не тела в обычном смысле слова и не излучение. Это дыры в пространстве и времени, возникающие из-за очень сильного искривления пространства и изменения характера течения времени в стремительно нарастающем гравитационном поле.
В предыдущих разделах мы в то же время показали, что черные дыры являются в некотором смысле и очень простыми объектами. Их свойства никак не зависят от свойств сколлапсировавшего вещества, от всех сложностей строения вещества, его атомной структуры, находящихся в нем физических полей, не зависят от того, было ли вещество водородом или железом и т. д. При образовании черной дыры для внешнего наблюдателя все свойства сколлапсировавшего тела как бы исчезают, они не влияют ни на границу черной дыры, ни на что другое во внешнем пространстве, остается только гравитационное поле, характеризуемое лишь двумя параметрами — массой и вращением (как мы уже говорили, присутствие глобального электрического заряда несвойственно небесным объектам). Этим определяются и форма черной дыры, и ее размеры, и все остальные ее свойства. Так что с полной определенностью можно сказать, что нет ничего проще черной дыры: человеческое тело, например, несравненно сложнее, — его двумя числами, как черную дыру, не охарактеризуешь.
По поводу такой удивительной простоты черных дыр американский физик Кип Торн как-то воскликнул: «Представьте себе, что мы могли бы судить о всех особенностях характера женщины только те ее весу и цвету волос!»
Но и нет ничего белее странного, чем черная дыра — ведь человеческое воображение даже не в состоянии представить себе, до какой степени происходит искривление пространства и изменение течения времени, что в них возникает дыра. Изучение физики черных дыр позволяет расширить наши познания о фундаментальных свойствах пространства и времени. Как мы увидим в дальнейшем, в окрестности черных дыр возникают, например, квантовые процессы, обнаруживающие сложнейшую структуру так называемого физического вакуума. Еще более мощные (катастрофически мощные) квантовые процессы происходят внутри самой черной дыры (в окрестности сингулярности). Экспериментальное открытие черных дыр в природе было бы чрезвычайно важным для естествознания. Мы смогли бы изучать новые законы, управляющие свойствами пространства и времени в сильных гравитационных полях, новые законы, управляющие движением материи в необычных условиях. Образно говоря, черные дыры — это дверь в новую, широчайшую область, нашего познания физического мира.
Но насколько реальны черные дыры? Как мы уже говорили, искусственно их изготовить пока нельзя. Однако возможно, как оказалось, возникновение их во Вселенной естественным путем.
Глава IV.
Поиски черных дыр
Они должны существовать
То, что знают астрономы об эволюции звезд, приводит к неизбежному выводу: черные дыры должны возникать в конце жизни массивных небесных тел. Как же протекает их эволюция и почему следует столь определенный вывод?
Вещество обычной звезды, подобной нашему Солнцу, находится под действием двух противоположных сил — тяготения, стремящегося сжать звезду к центру, и давления раскаленных газов, стремящихся ее расширить. Их равенство обеспечивает устойчивое состояние звезды. Но горячая звезда непрерывно излучает энергию с поверхности, и если бы эта потеря не компенсировалась, то звезда потеряла бы свою тепловую энергию и стала бы сжиматься. Однако этого не происходит, ибо вблизи центра звезды, где температура достаточно велика, идут термоядерные реакции, сопровождающиеся выделением огромной энергии. При этом ядерное «горение» претерпевают сначала водород, гелий, а затем и более тяжелые элементы — углерод, кислород и т. д. Термоядерные реакции и являются источником энергии звезд, которую они излучают в пространство.
С течением времени исчерпывается запас ядерного горючего в звезде. Продолжительность ядерного «горения» — этого активного периода жизни звезд — определяется скоростью потери энергии на излучение и запасами ядерного топлива. И то и другое зависит от массы звезды. Поэтому и продолжительность жизни звезды определяется ее массой. Звезды с массой, равной солнечной, живут около 10 миллиардов лет. Более массивные звезды живут меньше. Так, звезда массой 3 массы Солнца живет один миллиард лет, а звезда массой 10 масс Солнца всего 100 миллионов лет.
Когда исчерпается все ядерное топливо, звезда, продолжая терять энергию на излучение, постепенно сжимается. Если масса ее не превышает массу Солнца более чем в 1,2 раза, то сжатие закончится, когда радиус звезды составит несколько тысяч километров. Плотность вещества при этом может достигнуть 109 г/см3. Такие звезды получили название белых карликов. Они уже давно известны астрономам.
После превращения в белый карлик звезда остывает, практически не уменьшая своих размеров. Давление газа, препятствующее дальнейшему сжатию белого карлика, обеспечивается квантовыми силами, возникающими между достаточно тесно упакованными электронами плазмы, составляющей звезду. Это давление в условиях звезды никак не зависит от температуры ее вещества. Поэтому белый карлик может полностью остыть и превратиться в черный карлик, не изменив своего размера.
Если масса звезды более 1,2 массы Солнца, то в ходе ее сжатия плотность вещества превысит 109 г/см3. При такой плотности возникают ядерные реакции, поглощающие много энергии. Равенство сил тяготения и давления нарушается, и звезда начнет стремительно сжиматься.