Рейтинговые книги
Читем онлайн ЯЗЫК ПРОГРАММИРОВАНИЯ С# 2005 И ПЛАТФОРМА .NET 2.0. 3-е издание - Эндрю Троелсен

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 117 118 119 120 121 122 123 124 125 ... 259

 // в данный момент данный метод.

Thread currThread = Thread.CurrentThread;

}

Для платформы .NET не предполагается прямого однозначного соответствия между доменами приложения и потоками. Напротив, домен приложения может иметь множество потоков, выполняющихся в рамках этого домена в любой момент времени. Кроме того, конкретный поток не привязан к одному домену приложения в течение всего времени существования потока. Потоки могут пересекать границы домена приложения, подчиняясь правилам потоков Win32 и целесообразности CLR.

Но, хотя активные потоки могут перемещаться через границы доменов приложения, в любой конкретный момент времени один конкретный поток может выполняться в рамках только одного домена приложения (другими словами, один поток не может работать в нескольких доменах приложения одновременно). Чтобы программно получить доступ к домену приложения, содержащему текущий поток, следует вызвать статический метод Thread.GetDomain().

private static void ExtractAppDomainHostingThread() {

 // Получение домена приложения, содержащего текущий поток.

 AppDomain ad = Thread.GetDomain();

}

Любой поток в любой момент времени также может быть перемещен средой CLR в любой из имеющихся контекстов или помещен в новый контекст. Чтобы получить текущий контекст, в рамках которого оказался поток, используйте статическое свойство Thread.CurrentContext.

private static void ExtractCurrentThreadContext() {

 // Получение контекста, в рамках которого

 // действует текущий поток.

Context ctx = Thread.CurrentContext;

}

Снова подчеркнем, что именно среда CLR является тем объектом, который отвечает за помещение потоков в соответствующие домены приложения и контексты. Как разработчик приложений .NET, вы обычно остаетесь в блаженном неведении относительно того, где заканчивается данный поток (или, точнее, когда он помещается в новые границы). Однако вам будет полезно знать различные способы получения соответствующих примитивов.

Проблема конкуренции и роль синхронизации потоков

Одним из множества "преимуществ" (читайте источников проблем) многопоточного программирования является то, что вы имеете очень узкие возможности контроля в отношении использования потоков операционной системой и средой CLR. Например, построив блок программного кода, создающий новый поток выполнения, вы не можете гарантировать, что этот поток начнет выполняться немедленно. Скорее, такой программный код только "даст инструкцию" операционной системе начать выполнение потока как можно быстрее (что обычно означает момент, когда наступит очередь этого потока у планировщика потоков).

Кроме того, поскольку потоки могут перемещаться между границами приложения и контекста по требованию CLR, вы должны, следить за тем, какие элементы вашего приложения открыты влиянию потоков (т.е. позволяют доступ множества потоков), а какие операции оказываются атомарными (операции, открытые для множества потоков, потенциально опасны!). Для примера предположим, что поток вызывает некоторый метод конкретного объекта. Предположим также, что после этого поток, получает инструкцию от планировщика потоков приостановить выполнение, чтобы позволить другому потоку доступ к тому же методу того же объекта.

Если оригинальный поток еще не завершил свою текущую операцию, второй входящий поток может получить дли просмотра объект в частично измененном состоянии. В этом случае второй поток, по сути, будет читать некорректные данные, в результате чего возникнут досадные (и очень трудные для выявления) ошибки, которые характеризуются неустойчивостью при воспроизведении и отладке.

Атомарные операции, с другой стороны, всегда безопасны в многопоточном окружении. К сожалению, только для очень небольшого числа операций из библиотек базовых классов .NET можно гарантировать, что эти операции будут атомарными. Не является атомарной даже операция присваивание значения члену-переменной! Если в документации .NET Framework 2.0 SDK в отношении какой-либо операции специально не оговорено, что данная операция является атомарной, вы должны предполагать, что эта операция является открытой влиянию потоков и принимать специальные меры предосторожности.

Теперь вам должно быть ясно, что домены многопоточного приложения тоже открыты влиянию потоков, поскольку потоки могут пытаться использовать доступные функциональные возможности одновременно. Чтобы защитить ресурсы приложения от возможных искажении, разработчикам .NET приходится использовать так называемые примитивы потоков (такие, как блокировки, мониторы и атрибут [Synchronization]), чтобы контролировать доступ выполняемых потоков.

Нельзя утверждать, что платформа .NET исключила все трудности, возникающие при построении устойчивых многопоточных приложений, но теперь этот процесс значительно упрощён. Используя типы, определенные в пространстве имен System.Threading, вы получаете возможность создавать дополнительные потоки с минимальными усилиями и минимальными проблемами. Точно так же, когда приходит время блокировать открытые элементы данных, вы можете использовать дополнительные типы, которые обеспечивают те же функциональные возможности, что и примитивы потоков Win32 API (но при этом используется намного более аккуратная объектная модель).

Однако использование пространства имея System.Threading – это не единственный путь построения многопоточных программ .NET. В ходе нашего обсуждения делегатов (см. главу 8) мы уже упоминали о том, что все делегаты NET обладают способностью асинхронного вызова членов. Это – главное преимущество платформы .NET, поскольку одной из основных причин, в силу которых разработчик создает потоки, является необходимость такого вызова методов, при котором не возникает блокировок (т.е. именно асинхронного вызова). Для достижения такого результата можно использовать и пространство имен System.Threading, но с помощью делегатов это делается намного проще.

Краткий обзор делегатов .NET

Напомним, что тип делегата .NET – это обеспечивающий типовую безопасность объектно-ориентированный указатель функции. Когда вы объявляете делегат .NET, компилятор C# отвечает на это созданием изолированного класса, полученного из System.MulticastDelegate (который, в свою очередь, является производным от System.Delegate). Эти базовые классы наделяют каждый делегат способностью поддерживать список адресов методов, которые могут быть вызваны позднее. Давайте рассмотрим декларацию делегата BinaryOp, который был впервые определен в главе 8.

// Тип делегата C#.

public delegate int BinaryOp(int x, int y);

В соответствии с данным определением BinaryOp может указывать на любой метод с двумя целочисленными аргументами, возвращающий целочисленное значение. После компиляции соответствующий компоновочный блок будет содержать полноценное определение класса, которое динамически генерируется на основе декларации делегата. В случае BinaryOp это определение класса будет выглядеть приблизительно так (приводится в псевдокоде).

sealed class BinaryOp: System.MulticastDelegate {

 public BinaryOp(object target, uint functionAddress);

 public void Invoke(int x, int y);

 public IAsyncResult BeginInvoke(int x, int y, AsyncCallback cb, object state);

 public int EndInvoke(IAsyncResult result);

}

Напомним, что генерируемый метод Invoke() используется для вызова методов, обслуживаемых объектом делегата в синхронном режиме. В этом случае вызывающий поток (например, первичный поток приложения) вынужден ждать, пока не завершится вызов делегата. Также напомним, что в C# метод Invoke() не вызывается в программном коде явно, а запускается в фоновом режиме при использовании "нормального синтаксиса" вызова метода. Рассмотрите следующий программный код, в котором статический метод Add() вызывается в синхронной (т.е. блокирующей) форме.

// Это требуется для вызова Thread.Sleep().

using System.Threading;

using System;

namespace SyncDelegate {

 public delegate int BinaryOp(int x, int y);

 class Program {

  static void Main(string[] args) {

   Console.WriteLine("***** Синхронный вызов, делегата *****");

   // Вывод ID выполняемого потока.

   Console.WriteLine("Вызван Main() в потоке {0}.", Thread.CurrentThread.GetHashCode());

   // Вызов Add() в синхронной форме.

   BinaryOp b = new BinaryOp(Add);

   int answer = b(10, 10);

   // Эти строки не будут выполнены до завершения

   // работы метода Add().

   Console.WriteLine("В Main() еще есть работа!");

   Console.WriteLine("10 + 10 равно {0}.", answer);

   Console.ReadLine();

1 ... 117 118 119 120 121 122 123 124 125 ... 259
На этой странице вы можете бесплатно читать книгу ЯЗЫК ПРОГРАММИРОВАНИЯ С# 2005 И ПЛАТФОРМА .NET 2.0. 3-е издание - Эндрю Троелсен бесплатно.
Похожие на ЯЗЫК ПРОГРАММИРОВАНИЯ С# 2005 И ПЛАТФОРМА .NET 2.0. 3-е издание - Эндрю Троелсен книги

Оставить комментарий