Алфавит белков. Уже говорилось, что аминокислотой может называться любое соединение, содержащее аминный(—NH2) и карбоксильный (—COOH) радикалы. Отсюда следует, что число возможных аминокислот должно быть очень велико, практически бесконечно. Тем более удивительно, что природа для построения белковых молекул использует из всего этого, не поддающегося учету разнообразия всего лишь двадцать аминокислот.
Это так называемые «магические». Может быть, по каким-то неясным причинам только они годятся для использования в жизненных процессах? Нет, аминокислоты, не входящие в число «магических», можно обнаружить в составе организмов, но только не в белках. Таковы, например, тироксин (известный гормон щитовидной железы) или же норвалин (α-аминомасляная кислота). Некоторые аминокислотные остатки, уже входя в состав белковой молекулы, модифицируются. Присоединив остаток фосфорной кислоты, серин превращается в фосфосерин (в казеине молока и пепсине желудочного сока).
Или же набор белковых аминокислот отражает их большую вероятность возникновения в период происхождения жизни? Трудно однозначно ответить на этот вопрос: ведь мы не можем точно восстановить условия, существовавшие на Земле четыре миллиарда лет назад. Однако в многочисленных опытах, моделировавших самые различные пути становления органических веществ из неорганических (таких, как вода, аммиак, углекислый газ, метан, водород и др.), удалось синтезировать большой набор аминокислот, гораздо более разнообразный, чем тот, который составляют двадцать «магических».
Да и сам анализ алфавита белков наводит на размышления. Все «магические» аминокислоты можно разделить на такие группы:
1. Производные углеводородов. В этом случае аминогруппа и кислотный радикал присоединяются к углеводороду из одного, двух, трех или четырех звеньев. Таковы глицин (Гли), аланин (Ала), валин (Вал), лейцин (Лей) и изолейцин (Илей). В дальнейшем мы будем пользоваться этими сокращениями.
В эту группу входит единственная аминокислота, не содержащая асимметричного атома углерода (глицин). В прочих атомы углерода содержат разные радикалы, асимметричны, и потому эти аминокислоты могут быть представлены в правых и левых формах (а в белках – только в левых).
2. Кислые аминокислоты. Этот термин, напоминающий «масло масляное», означает, что они содержат еще один радикал —COOH, кроме того, который образует пептидную связь. Они и в белке сохраняют кислотные свойства. Это уже упоминавшаяся глутаминовая кислота (Глу) и аспарагиновая (Асп):
В некоторых белках вместо этих аминокислот имеются их амиды – глутамин и аспарагин. В таких случаях к боковой карбоксильной группе —COOH присоединяется молекула аммиака, и остаток вместо кислотных приобретает основные свойства:
Сокращенно их называют ГлуN и АспN, или же проще Глн и Асн. Так что, строго говоря, выражение «двадцать магических аминокислот» не совсем точно. В счет их входят и две простые аминокислоты и два их амида.
З. Содержащие оксигруппу —OH. Таковы серин (Сер) и треонин (Тре):
4. Основные – с аминогруппой в боковом радикале. Таковы лизин (Лиз), аргинин (Арг) и более сложная, содержащая имидазольную группу аминокислота гистидин (Гис):
5. Ароматические, с бензольными кольцами в боковых радикалах – фенилаланин (Фен или Фал) и тирозин (Тир)
6. Группа гетероциклических (индолсодержащих) аминокислот включает лишь триптофан (Три):
7. Зато целых три аминокислоты содержат в боковых радикалах атомы серы – это цистеин (Цис) цистин (димер цистеина, две молекулы цистеина «сросшиеся» вместе) и метионин (Мет):
8. И наконец, две аминокислоты, которым, строго говоря, не хватает одного атома водорода, чтобы так называться. У них аминная группа превращается в иминную, образуя пиррольное кольцо. Таковы иминокислоты пролин (Про) и его производное – оксипролин, то есть пролин, содержащий оксигруппу —OH:
Добавим, что оксипролин и цистин возникают уже в белке из пролина и цистеина.
Вот из этих-то двадцати букв аминокислотного алфавита возникло чудовищное, не поддающееся учету разнообразие белковых молекул. Все могут белки: ускорять химические реакции и быть материалом для шерсти, волос и рога, переносить кислород железо и медь убивать бактерии, обезвреживать вирусы и яды, слагать оболочки клеток и распознавать другие клетки, сокращать мускулы и вызывать холодное свечение клеток. Одного не могут – размножаться сами. Информация об аминокислотных последовательностях в белках закодирована в нуклеотидных последовательностях ДНК и РНК.
И глядя на набор «магических» аминокислот, трудно отделаться от впечатления, что этот выбор природы случаен. Так уж получилось, что первые нуклеиновые кислоты приобрели способность к матричному синтезу полипептидных цепочек из двадцати магических». И этого оказалось достаточно, дальнейшее обогащение алфавита было просто не нужно.
А вот почему все аминокислоты в белках левые? Так, по-видимому, удобнее для матричного синтеза. Некоторые организмы синтезируют довольно сложные пептидные цепочки специального назначения нематричным путем. Таковы, например, некоторые антибиотики типа грамицидина или же пептиды, слагающие оболочки бактерий. В них жесткие запреты матричного синтеза снимаются, используются иные аминокислоты, кроме «магических», как в левой, так и в правой форме.
Вот как выглядит молекула грамицидина С:
Достаточно одного взгляда на схему этой кольцевой молекулы, чтобы убедиться в невозможности ее синтеза на нуклеиновой матрице. Ведь в нее входят два остатка орнитина (Орн) – аминокислоты, не числящейся в магических и правый фенилаланин (d – фен). Действительно, синтезируют грамицидин С два фермента: один соединяет в цепочки две пятичленные последовательности, а другой сшивает их в кольцо. Вот эти ферменты синтезируются уже «настоящим» матричным путем.
Или же когда мы обнаруживаем в стенках капсул сибиреязвенной бациллы полипептид, состоящий из глутаминовой кислоты, мы вправе предположить, что он синтезируется нематричным путем. Ведь, во-первых, глутаминовая кислота в нем правая, во-вторых, пептидная связь образована в нем боковой (так называемой γ – карбоксильной) группой.
Но эти, как и другие подобные примеры, лишь подтверждают важность матричного синтеза. Без ферментов и здесь дело не обходится. И мы переходим к важному вопросу: молекулы белков состоят из двадцати аминокислот (точнее, аминокислотных остатков) в разных комбинациях. Молекулы нуклеиновых кислот собраны из четырех сортов нуклеиновых оснований. Каким сочетанием нуклеотидов в ДНК кодируется каждая из аминокислот? Каковы принципы генетического кода?
Генетический код. При слове «код» у любителей приключенческой литературы возникают определенные ассоциации. Но принцип кодирования известен не только разведчикам.
Каждый грамотный человек всю жизнь занимается перекодировкой информации.
Наше письмо – тоже код, в котором определенные символы-буквы соответствуют определенным звукам. В этом смысле можно уподобить буквы сочетаниям нуклеотидов в ДНК, а звуки – аминокислотам в белке. Между буквой и звуком нет какого-либо соответствия, кроме исторического. В этом и есть принцип кодирования. На пример, почему звук «А» мы обозначаем соответствующей буквой? Только потому, что древние греки позаимствовали из алфавита финикийцев знак α (видоизмененный знак – от семитского «алеф» – бык.[5]
Это схематический рисунок головы быка). Если бы наши предки-славяне придумали алфавит сами, этот символ означал бы, наверное, не «А», а «Б» (бык) или «Г» (говядо – древнеславянское «бык»). Обозначают же японцы в своей слоговой азбуке – катакане звук «А» символом
– и ничего, понимают, потому что знают этот код. Так же как знаем свой код мы и как нуклеиновый код «знают» белоксинтезирующие системы клетки. Я подчеркиваю: именно клетки, потому что бесклеточные формы жизни – вирусы при стройке своих белков используют белоксинтезирующие системы хозяев.
Так как «магических» аминокислот двадцать, а оснований нуклеиновых кислотах всего четыре ясно, что каждое звено белковой цепи кодируется несколькими нуклеотидными звеньями, а именно тремя. Число сочетаний из четырех по три равняется 64. Стало быть, в коде ДНК 64 «буквы». Три из них соответствуют пробелам в типографском наборе. В средние века текст писали сплошняком, без пробелов, что, наверное, затрудняло чтение и сейчас создает трудности при расшифровке. Так, написанную слитно фразу из «Слова о полке Игореве» «исхотиюнакроватьирек» толковали «и схоти ю на кровать и рек…» или же «и схоти юнак ров (то есть могила. – Б. М.) а тьи рек». Если же сплошняком будет набран аминокислотный текст, смысла в подобном синтезе не будет. На бессмысленных, не соответствующим никаким аминокислотам сочетаниях нуклеотидов синтез обрывается – полипептидная цепочка готова.