лет, команда создала сложную вакуумную установку с подвижным колесом, к которому прикрепили 11 различных металлических дисков: медь, никель, железо, цинк, серебро, магний, свинец, сурьма, золото, алюминий и латунь. Колесо сидело на агатовых подшипниках внутри стеклянного цилиндра диаметром 8 см с узким источником света – меньше каждого диска, – который освещал трубку. Они поместили полоску железа на край колеса так, чтобы при осторожном движении большим магнитом рядом с трубкой каждый образец металла поворачивался к источнику света без необходимости открывать систему для воздуха[64]. Как оказалось,
все результаты не зависят от температуры, по крайней мере, до 100 градусов по Цельсию, что было самым высоким показателем, на который они осмелились пойти с этой версией оборудования. Позже Милликен писал, что до сих пор он, «казалось, добился очень незначительных успехов как физик-экспериментатор!»[65]
Но результаты Милликена на самом деле были успешными. Поскольку они отличались от тех, что были прежде, ученый столкнулся с самым редким и потому драгоценным состояниям – пробелом в знаниях. Должно быть, у него было предчувствие, что отсутствие положительных результатов свидетельствует о чем-то большем, чем просто экспериментальная ошибка. В конце концов, он потратил годы на то, чтобы убедиться, что эксперимент работает исправно. Так каково же было альтернативное объяснение? Если его результаты правильные и фотоэлектрический эффект действительно не зависит от температуры, то классическая физика просто не может этот эффект объяснить.
В Берне в 1905 году Альберт Эйнштейн столкнется с фотоэлектрическим эффектом и выдвинет теорию, которая направит эксперименты Милликена. Эйнштейн изучал физику в Цюрихе, где по вечерам он продолжал работать со своей невестой Милевой Марич, физиком сербского происхождения и единственной женщиной на его курсе[66]. После своего последнего экзамена Эйнштейн не смог найти работу ассистента по физике, поэтому он временно занял низкооплачиваемую должность преподавателя в Винтертуре, в 20 км к северу. Однажды в 1901 году он написал Милеве, что «наполнен таким счастьем и радостью…»[67]. Возможно, она ожидала, что он будет счастлив, поскольку только что написала ему, что он вот-вот станет отцом. Но причина, по которой он был так взволнован, заключалась в ином: он только что наткнулся на экспериментальные результаты Ленарда по фотоэлектрическому эффекту, показывающие, что электроны могут порождаться ультрафиолетовым излучением.
Эйнштейн считал странным, что большинство областей физики были подобны частицам: атомы, электроны и колебания отдельных молекул, вызывающие нагревание, – все это зависело от движения отдельных дискретных объектов. Даже волны воды состояли из небольших частиц – молекул воды – в коллективном движении, в то время как звуковые волны были волнами давления в молекулах газа. И все же световые волны считались непрерывным явлением. Почему так?
Эйнштейн знал о недавней работе своего старшего коллеги, немецкого физика Макса Планка, поклонника глубокой, фундаментальной теоретической физики. В молодости Планк предпочел физику музыке, несмотря на то что его профессор физики говорил ему: «Почти все уже открыто, разве что осталось заполнить несколько дыр». Планк недавно пришел к новой увлекательной идее объединить различные области физики – механическую вибрацию (тепло) и электромагнетизм (свет). Планк начал с признания того, что определенно существует некоторая взаимосвязь между теплом и светом: объекты излучают разные цвета при разных температурах, поэтому горячие угли светятся красным, в то время как солнечный свет ближе к желтому или белому.
Когда я говорю «свет», я имею в виду не только видимый спектр. Свет – или, точнее, электромагнитное излучение – различается по частоте: от рентгеновских и гамма-лучей до инфракрасных и радиоволн. Но для наших целей я буду называть это просто светом. Так почему же объекты светятся определенным цветом? Что мешает раскаленным углям светиться фиолетовым, а планете Юпитер излучать рентгеновские лучи?[68] И снова классическая физика потерпела неудачу.
Предыдущие физики пытались определить свет, который будет излучаться своего рода упрощенным горячим объектом, называемым абсолютно черным телом, воображаемой сущностью, введенной в 1859 году, чтобы лучше понять, как излучается тепло. Черное тело – это то, что образовалось бы, если бы вы взяли коробку и держали ее при постоянной температуре. Со временем она будет производить уникальный вид света, называемый излучением черного тела[69]. Ключевой момент в излучении абсолютно черного тела заключается в том, что не имеет значения, каков размер этого тела – с горошину или с планету: пока оно идеально поглощает и испускает излучение, спектр света, который оно излучает, то есть количество света каждого цвета, излучаемого черным телом, всегда одинаково. Вот что делает его уникальным. Эксперименты по аппроксимации чернотельных излучателей показали что количество излучаемого света сначала всегда увеличивалось с частотой, достигало максимума при каком-то цвете, а затем снова уменьшалось при высокой частоте. Этот пик зависел только от температуры объекта. Похожее можно увидеть в кузнице, где металл сначала светится красным, затем – оранжевым, а затем – белым, по мере того как он нагревается, причем пик спектра смещается от красного к синему.
Использование классической физики для вычисления света, испускаемого абсолютно черным телом, привело к уравнению, которое вообще не соответствовало экспериментам. Более ранние расчеты британского физика лорда Рэлея предсказывали, что количество света, излучаемого в нижней (более красной) части спектра, будет небольшим, но затем, от желтого и зеленого к синему, фиолетовому и ультрафиолетовому, количество будет расти и расти, в конечном итоге достигнув максимума с высокоэнергетическим рентгеновским излучением и даже высокочастотным гамма-излучением. При каждом удвоении частоты количество излучаемого света должно увеличиваться в четыре раза. Но это явно неправильно: когда мы смотрим на мир, он не синий и фиолетовый[70] и не сжигает нас высокоэнергетическими рентгеновскими лучами. Вычисления были невозможны и потому, что если вы сложите общее количество световой мощности, излучаемой на всех частотах, то общая сумма будет бесконечной. Если бы это было правдой, то вся материя, даже самая холодная, излучала бы так интенсивно, что вся энергия исчезла бы в облаке высокочастотного света. Это было настолько парадоксально для теоретической физики, что само явление стало известно как «ультрафиолетовая катастрофа». Планк не мог смириться с такой ситуацией. Взявшись за эту проблему примерно в 1900 году[71], он понял, что в этих более ранних расчетах спектра излучения сделаны некоторые предположения о том, как энергия ведет себя внутри абсолютно черного тела. Предполагалось, что энергия может быть разделена между атомами (или «резонаторами») в черном теле любым способом, так что существует бесконечное множество способов распределения энергии[72]. Но это означало, что при суммировании общей излучаемой мощности складывались все эти возможные состояния, вот почему мощность