Начало кипения Н. обычно выше 28 °С. температура застывания колеблется от + 30 до — 60 °С и зависит в основном от содержания парафина (чем его больше, тем температура застывания выше). Теплоёмкость Н. 1,7—2,1 кдж/кг ×К (0,4—0,5 ккал/кг ×°С), теплота сгорания 43,7—46,2 Мдж/кг (10 400 — 11 000 ккал/кг ), диэлектрическая проницаемость 2—2,5, электрическая проводимость 2×10-10 —0,3×10-18 ом-1 ×см-1 . Вязкость изменяется в широких пределах (при 50 °С 1,2—55 сст ) и зависит от химического и фракционного состава Н. и смолистости (содержания в ней асфальтосмолистых веществ). Температура вспышки Н. колеблется в широких пределах (от ниже — 35 до 120 °С) в зависимости от фракционного состава и давления насыщенных паров. Н. растворима в органических растворителях, в воде при обычных условиях практически нерастворима, но может образовывать с ней стойкие эмульсии.
Основу технологической классификации Н. в СССР (ГОСТ 912—66) составляют: содержание серы (класс I — малосернистые Н., включающие до 0,5% S; класс II — сернистые Н. с 0,5—2% S; класс III — высокосернистые Н., включающие свыше 2% S); потенциальное содержание фракций, выкипающих до 350 °С (тип Т1 — нефти, в которых указанных фракций не меньше 45%, тип Т2 — 30—44,9% и тип Т3 — меньше 30%); потенциальное содержание масел (группы M1 , M2 , M3 и M4 ; для M1 содержание масел не меньше 25%, для M4 — меньше 15%); качество масел (подгруппа И1 — нефти с индексом вязкости масла больше 85, подгруппа И2 — нефти с индексом вязкости 40—85); содержание парафина в Н. и возможность получения реактивных, дизельных зимних или летних топлив и дистиллятных масел с депарафинизацией или без неё (вид П1 — нефти с содержанием парафина не выше 1,5%, вид П2 — нефти с 1,51—6% парафина и вид П3 — нефти с содержанием парафина больше 6%). Сочетание обозначений класса, типа, группы, подгруппы и вида составляет шифр технологической классификации Н. Например, доссорская (Казах. ССР) малопарафиновая Н. имеет шифр 1Т1 М1 И1 П1 , т. е. Н. малосернистая с потенциальным содержанием фракций, выкипающих до 350 °С, свыше 45%, потенциальным содержанием масел выше 25%, индексом вязкости масла больше 85 и содержанием парафина менее 1,5%.
Технологическая классификация может быть использована для сортировки Н. (при направлении для переработки на заводах), учёта качества при планировании добычи и переработки и при проектировании новых заводов. За рубежом Н. сортируют в основном по плотности и содержанию серы.
VII. Переработка
Начало применения Н. археологи относят к 6-му тыс. до н. э. В 3-м тыс. до н. э. в государствах Двуречья и Египте асфальт использовали как связующее и водонепроницаемое вещество вместе с песком и известью для изготовления мастики, применяемой при сооружении зданий из кирпича и камня, дамб, причалов и дорог. Н. сжигали в светильниках и применяли в качестве лекарства. Её использовали в военном деле как воспламеняющееся вещество вместе с селитрой, серой и смолой для изготовления «огненных стрел» и «огненных горшков».
В средние века упоминания о Н. встречаются у писателей Ближнего и Среднего Востока, Средней Азии и Западной Европы. В 16—17 вв. Н. была предметом торговли. В коммерческих словарях указывалось, что она привозится в Марсель из Лангедока (приморской области Франции), турецкого г. Смирны и сирийского г. Алепно (до 4,5 т в год). В 18 в. появляются первые научные труды о Н. В 1721 греческий учёный Эйрини д'Эйринис, живший во Франции, опубликовал результаты исследования Н. и асфальта.
Состояние Бакинского нефтяного промысла в 13 в. описано Марко Поло. Он указывает, что Бакинская Н. применялась для освещения и в качестве лекарства от кожных болезней. В центральные районы России в 16—17 вв. Н. привозилась из Баку. Её применяли в медицине, живописи в качестве растворителя при изготовлении красок, а также в военном деле для изготовления гранат, негасимых ветром свечей и «светлых» ядер для «огнестрельных потешных стрельб».
Перегонка Н. была известна в начале нашей эры. Этот способ очистки применялся для уменьшения неприятного запаха Н. при использовании её в лечебных целях. В иностранных и рус. лечебниках 15—17 вв. Н. рекомендуется как наружное и внутреннее средство. Считалось, что Н. помогает при воспалительных процессах. В лечебниках даётся также описание способа перегонки Н. по опытам римского врача Кассия Феликса и арабского учёного 11 в. Авиценны. О перегонке бакинской Н. впервые упоминает хорезмийский географ 13 в. Бекран. Большое внимание перегонке Н. уделялось в 18 в. в связи с поисками и изучением нефтяных месторождений. В 1748 в лаборатории Берг-Коллегии в Москве перегонялась Н., найденная на р. Ухте. В той же лаборатории перегонялась Н., добытая на р. Соке в 1754. В небольшом количестве Н. перегоняли в колбах, а в большем — в кубах. Нефтеперегонный завод с кубами периодического действия был впервые в мире построен крепостными крестьянами братьями Дубиниными вблизи г. Моздока в 1823. Из 40 вёдер Н., заливаемой в куб, они получали 16 вёдер перегнанной. В 1837 началась перегонка грозненской Н. на заводе откупщика В. Швецова. В этом году было отправлено в Москву 1000 пудов (16,38 т ) перегнанной Н. Завод для перегонки бакинской Н. был построен в Балаханах Н. И. Воскобойниковым. На заводе в 1837—39 было переработано 19,4 т Н. В 1859 в Сураханах промышленники В. А. Кокорев, Н. Е. Торнау и П. И. Губонин приступили к строительству завода для получения фотогена из бакинского кира . На этом заводе была начата (1860) переработка Н. и введена кислотно-щелочная очистка фотогена (позже слово «фотоген» было заменено словом «керосин»). В 1866 на нефтеперегонных заводах бывшей Бакинской губернии было получено 1600 т керосина. Через 3 года в Баку было 23 нефтеперегонных завода, а в 1873 — 80 заводов, способных дать 16 350 т керосина в год.
С начала 70-х гг. 19 в. на нефтеперегонных заводах наблюдался рост числа кубов и их размеров без значительного изменения конструкции. Такая технология не соответствовала всё возрастающим потребностям в нефтепродуктах. Кроме того, кубы периодического действия не обеспечивали надёжного разделения Н. на фракции, улучшения отбора керосина и смазочных масел и повышения их качества. На необходимость непрерывной перегонки Н. указывал Д. И. Менделеев в 1863, когда он посетил завод А. В. Кокорева в Сураханах. В 1873 нефтепромышленник А. А. Тавризов разработал конструкцию аппарата непрерывного действия, являющегося прототипом ректификационной колонны. Непрерывная перегонка Н. в кубовых батареях была осуществлена в 1883 на заводе братьев Нобель в Баку. На этих кубах были установлены дефлегматоры, устроенные в виде двух цилиндров, вложенных один в другой. Непрерывнодействующий перегонный аппарат был предложен В. Г. Шуховым и Ф. А. Инчиком (1886). Этот аппарат был установлен на заводе С. М. Шибаева в Баку. Новая установка позволяла ежесуточно перегонять количество Н., равное 27 объёмам аппарата, тогда как в кубе периодического действия можно было перегнать только полтора объёма, а в кубовой батарее — четыре. Основные технические принципы, заложенные в конструкции этого аппарата, используются в современных нефтеперегонных установках. Оригинальные установки для непрерывной перегонки Н. были разработаны О. К. Ленцем, Г. В. Алексеевым, Ю. В. Лермонтовой и др. русскими инженерами и химиками. Наиболее широкое распространение получили кубовые батареи непрерывного действия, вытеснившие периодические кубы. В 1893 непрерывнодействующих кубов было 15,7%, а в 1899 — 60% от общего числа кубов в нефтеперерабатывающей промышленности. Основными продуктами нефтеперерабатывающей промышленности были керосин и мазут. На долю керосина в 1899 приходилось 30—33%; кроме того, получали смазочных масел 2—3%, бензина 3%, остальное составлял мазут.
Нефтеперегонные заводы в 40-х гг. 19 в. появляются в др. странах: Дж. Юнг начал перегонку Н. на заводе в Великобритании в 1848, в 1849 С. М. Киром был построен завод по перегонке Н. в Пенсильвании (США). На этом заводе была введена кислотно-щелочная очистка нефтепродуктов. Во Франции первый нефтеперегонный завод построен А. Г. Гирном в Эльзасе (1854). На заводе из Н. и асфальта получали смазочные масла. При перегонке Н. на заводе применялся перегретый пар. В 1866 Дж. Юнг взял патент на способ получения керосина из тяжёлых Н. при перегонке под давлением. Этот способ перегонки был назван крекингом . К 1869 давление во время перегонки Н. на лабораторной установке было доведено до 3,7×105 н/м2 (около 3,8 ам ). При обычной перегонке из Н. различных месторождений Юнг получал 2,5—20% керосина, а при крекинге 28— 60%.
В дореволюционной России вследствие слабого развития автомобильной и авиационной промышленности спрос на бензин вполне удовлетворялся бензином прямой перегонки. Однако к началу 20 в. русские учёные и инженеры подробно изучили процесс переработки Н., сопровождающийся разложением исходных углеводородов под влиянием высокой температуры и давления. В 1875 А. А. Летний проводил опыты по получению ароматических углеводородов пиролизом Н. Работа Летнего завершилась созданием промышленной установки на Константиновском заводе В. И. Рагозина. Ароматические углеводороды из Н. были необходимы для получения красителей, используемых в развивавшейся в то время текстильной промышленности. С той же целью пиролиз Н. и нефтяных остатков изучали Ю. В. Лермонтова, Б. В. Марковников, К. И. Лисенко, Г. В. Алексеев, Н. Д. Зелинский.