Шрифт:
Интервал:
Закладка:
Как видим, именно на годы с неблагоприятными климатическими условиями падают отрицательные значения зернового баланса.
По данным таких зернопроизводящих стран, как Канада, США, СССР, Китай, Франция, Австралия, Аргентина, ФРГ, Великобритания и Испания, с 1960 по 1977 г. площадь посевов пшеницы возросла на 6,3%, а производства зерна — на 48%. Однако имеются основания предполагать, что, помимо совершенствования технологии производства, некоторую роль в повышении урожайности играли и климатические условия послевоенных лет и что наступивший период неустойчивости климата будет препятствовать этому росту.
Неслучайно поэтому некоторые специалисты в США считают, что в грядущем десятилетии научно-технический «взрыв» в сельском хозяйстве произойдет не в области биологии и техники, а в области совершенствования путей получения и эффективного использования информации о климате, т. е. в области культуры земледелия, основанной на оптимальном использовании климатической информации.
Анализ колебаний урожая зерновых в 25 зернопроизводящих районах мира в 1950—1973 гг. показал, что раз в три года можно ожидать такие климатические условия, которые вызовут изменения в сборе мирового урожая более чем на 27 млн. т в год относительно линии тренда. В связи с этим определенный интерес представляет выполненный в США комплекс исследований, цель которого — рассмотреть вероятные сценарии климата до 2000 г., оценить зависимость производства зерна в основных зернопроизводящих странах мира от климата и в конечном итоге проанализировать последствия реализации того или иного сценария.
Первая задача решалась путем опроса ведущих экспертов-климатологов мира о возможных изменениях климата к 2000 г. Было определено пять наиболее вероятных сценариев будущего климата: первый с вероятностью 0,1 предусматривает сильное похолодание климата с изменением средних температур до —1,4° С; второй с вероятностью 0,25 — умеренное похолодание климата с изменением средней температуры до —0,3° С; третий с вероятностью 0,3 — неизмененный климат или очень слабое (до 0,04° С) его потепление; четвертый с вероятностью 0,25 — умеренное потепление климата до 0,6° С; пятый с вероятностью 0,1 — сильное потепление климата до 1,8° С. Аналогичные оценки изменений температуры применительно к каждому сценарию эксперты дали и для различных субрегионов мира.
Другая группа экспертов в области сельскохозяйственного производства проанализировала, как те или иные комбинации отклонений суммы осадков и средних температур за вегетационный период от нормальных условий повлияют на урожай зерновых. Для 15 комбинаций «страна — вид зерна» были рассмотрены отклонения за базовый период от средних значений температуры, осадков (в %), урожая.
За базовый период принимали несколько десятилетий (от одного до шести), за которые для данной культуры и данной страны имелась необходимая информация. Если, к примеру, для отклонений температуры ΔT (°С) и осадков ΔR (%) эксперт определил урожайность 80% относительно лет со средними условиями погоды, он проставлял в анкете величину относительного урожая 80 и т.д. По этим данным были вычислены функции распределения, позволившие установить вероятность того или иного урожая p. В свою очередь, данному урожаю соответствует определенная комбинация ΔT и ΔR.
Рис. 16 иллюстрирует влияние отклонений температуры и осадков от средних значений для базового периода на урожай. Изолинии характеризуют урожайность в процентах от средней. Границы полигонов, имеющих неправильную форму, указывают на наиболее вероятные диапазоны изменений температуры и осадков для данных районов. Как видно из рисунков, вероятность попадания в данный интервал климатических условий составляет от 95 до 96%. Крестиками с цифрами отмечены максимальные урожаи в процентах от среднего. Так, например, для аргентинской кукурузы было отмечено два максимальных урожая (128%). Стрелками показаны величины среднеквадратических отклонений от средних значений (1σ) для ΔT и ΔR.
Из рисунка видно, что для большинства районов и диапазон изменений, и величина σ для осадков в относительных величинах больше, чем для температуры. Из этого следует, что сборы урожая в большей степени зависят от осадков, нежели от температуры.
Влияние климатических условий таково, что при экстремальных климатических условиях урожайность может падать от 50—60% от средних условий, а для некоторых случаев (аргентинская кукуруза) — до 45%. Максимальные урожаи достигают 113—145 и даже 156% (австралийская пшеница) от средних. В диапазоне отклонений климатических условий от средних значений урожайность может колебаться в пределах 10—20%.
В настоящее время существуют более эффективные методы оценок, основанные на использовании физико-математических моделей «погода—урожай». Тем не менее приведенные оценки дают правильную качественную картину, характеризующую весьма сильную зависимость сельскохозяйственного производства от климатических условий. Так, для кукурузы в Аргентине и США переход к сценарию сильного похолодания вызовет увеличение урожайности на 7—8%, а к сценарию потепления климата — понижение урожая на 3—4%. Для риса в Индии и Китае любой сценарий (похолодание или потепление) дает незначительное понижение урожаев. Примерно такая же картина и для соевых бобов в Бразилии и США. Урожай яровой пшеницы в Канаде понизится примерно на 10% в случае резкого похолодания климата и увеличится на 6—7% при сильном потеплении. Для озимой пшеницы в Аргентине, Австралии, Индии и США картина получается обратная. Сценарии похолодания климата дают рост урожая до 3—5%, а потепления — такие же примерно падения урожаев. Соответственно эксперты оценили, что за счет повышения технологии производства урожаи кукурузы, риса и соевых бобов увеличатся к 2000 г. на 25—50%, а яровой и озимой пшеницы — на 11—40%.
Рис. 16. Зависимость урожайности от климатических условий (температура и осадки).
а — аргентинская кукуруза; б — австралийская пшеница
Из приведенных данных следует, что рост производства зерна благодаря повышению технологии производства существенно превзойдет возможные потери за счет самого неблагоприятного климатического сценария. Однако этого роста урожайности явно недостаточно, так как ожидается, что для большинства основных зернопроизводящих стран рост производства зерна за счет совершенствования технологии составит не более 23—30%, что в пересчете на зерно даст дополнительно всего около 300—400 млн. т зерна. Этого достаточно, чтобы прокормить около 1—1,5 млрд. человек (исходя из нормы не 800, а 300 кг на человека). Предполагаемое же увеличение населения земного шара будет существенно больше, порядка 3—4 млрд. человек.
В этой связи проблема оптимального использования климатического потенциала для повышения урожаев будет иметь решающее значение. К этому, однако, следует добавить, что на фоне изменения средних климатических условий, приводящих к колебаниям урожая в пределах 10—20%, влияние экстремальных климатических условий может превышать эту цифру в 2—3 раза и достигать 30-50%.
При анализе текущего климата мы обратили внимание на увеличение повторяемости необычных климатических экстремумов. Анализ воздействия антропогенных факторов на климат, который проведен в следующем разделе, показывает, что вероятность появления климатических экстремумов возрастает.
Таблица 8. Изменчивость урожаев в 2000 г. для четырех сценариев климата
Полушарие Вид зерна — страна Сценарии Сильное похолодание, p = 0,1 умеренное похолодание, p = 0,25 умеренное потепление, p = 0,25 сильное потепление, p = 0,1 Северное Яровая пшеница (Канада) - - + ++ Яровая пшеница (США) -- - + ++ Кукуруза (США) --- - ++ ++ Соевые бобы (США) --- - ++ ++ Озимая пшеница (США) -- - + + Озимая пшеница (Китай) -- - + ++ Южное Кукуруза (Аргентина) -- - + + Озимая пшеница (Аргентина) -- - + + Озимая пшеница (Австралия) -- - + + Северное Рис (Индия) + + + - Рис (Китай) - - + + Озимая пшеница (Индия) - - + + Южное Соевые бобы (Бразилия) + + + +Обозначения:увеличение (+) и уменьшение (-) изменчивости годового производства урожая относительно базового периода без учета изменения технологии; ++++(----) — очень большие изменения, до 24% и более: +++(---) большие изменения, в среднем 16—24%; ++(--) — умеренные изменения, в среднем 8—16%; +(-) — небольшие изменения.