Стандартный путь точной науки – исследование частоты того или иного исхода эксперимента – получил название стохастического (вероятностного). При таком описании исход каждого конкретного эксперимента непредсказуем, можно говорить лишь о его вероятности.
Невозможность точного описания реальности вызывает беспокойство: как же жить в таком мире, характеристики которого нельзя однозначно определить? Все становится расплывчатым, неясным… Однако мы постоянно встречаемся с такими ситуациями, не ощущая при этом дискомфорта. Вот пример: при общении между собой мы пользуемся словами, смысл которых неоднозначен и нечеток. И это относится не только к неточностям речи: каждое слово, даже очень конкретное, имеет множество смыслов. Слова складываются в фразы, фразы – в повествования; казалось бы, неопределенность должна расти! И тем не менее мы прекрасно понимаем друг друга. Как описать математически такую ситуацию? В ней нечеткость выступает как внутреннее свойство объектов и никак не связана с вероятностью. Поиски таких математических моделей привели к рождению теории возможности – альтернативы вероятностного подхода.
Вероятность как частота исхода
Результат, изменяющийся от случая к случаю, так и получил название случайного. Мы принципиально не можем знать, чем закончится эксперимент со случайным исходом, как будто кто-то невидимый (как написано в одной научной книге – богиня случая Тихе) постоянно вмешивается в регулярное течение природных процессов, не давая нам успокоиться в своем «всезнании». Что же, раз исход в единичном испытании непредсказуем, для поиска закономерностей ученые стали исследовать частоту появления тех или иных исходов в длинной серии независимых экспериментов, связывая ее с вероятностью. Потребность в таких исследованиях возникла еще в XVII веке в связи со жгучим желанием заинтересованных лиц выиграть в рулетку, карты и другие азартные игры, получившие тогда широкое распространение. «Социальный заказ» нашел своих исполнителей в лице величайших математиков того времени – Паскаля, Ферма, Гюйгенса. Позже свои таланты в этой области проявили Лаплас, Гаусс, Пуассон – так возникла классическая теория вероятностей.
Но в строгую математическую дисциплину, построенную на аксиомах, подобно геометрии Евклида, эта наука превратилась лишь в первой половине XX века. А чтобы аксиоматическая теория описывала реальность, нужна ее интерпретация, связывающая абстрактные математические понятия с реальными наблюдаемыми величинами. Основой такой интерпретации, установившей, что вероятность события проявляется как частота его появления в длинной (бесконечной) серии независимых испытаний, явились специальные теоремы, получившие образное название Законов Больших Чисел.
Вероятностный подход не всемогущ
Итак, возникла математическая теория, описывающая различия между реальностью и расчетом. Причина таких различий объяснялась по-разному – недостатком наших знаний, наличием множества мелких неучтенных причин, принципиальной неопределенностью параметров, придуманных нами для описания Природы… Но вне зависимости от этого успехи применения вероятностного подхода впечатляли. Например, сейчас нам ясно, как из множества случайных (то есть заранее неопределенных) исходов могут складываться исходы почти достоверные, мы научились грамотно вычислять случайные ошибки, поняли, как строить математические модели явлений в условиях неопределенности. В рамках теории вероятности сравнением результатов наблюдений, проведенных с погрешностью, и предсказаний науки проверяются научные теории и гипотезы, и по результатам измерений наиболее точно оцениваются значения характеристик и параметров, описывающих реальность.
Вероятность из области точных наук распространяется все шире и шире, и вот уже к ней обращаются почти в любой ситуации, где в условиях проведения исследования имеется хоть какая-нибудь неоднозначность. Конкретный жизненный пример: какова вероятность того, что я сейчас отравлюсь «этой вашей заливной рыбой»? Можно, конечно, рассмотреть мысленный эксперимент, в котором бесконечный ансамбль личностей поедает рыбу, изготовленную в заданных условиях, – тогда процент выживших и даст искомую вероятность. Но как мне поможет знание того, что 99 из 100 дегустаторов не пострадают, если рыбу предстоит кушать именно мне? Ведь вероятность работает только для ансамбля множества и непригодна для описания единственного, конкретного объекта.
Еще одно сомнение
Кроме того, вероятностное описание годится лишь в так называемых условиях статистической регулярности, когда частоты появлений тех или иных событий не меняются от эксперимента к эксперименту. А вот здесь возникает очень интересный вопрос. Как-то всегда молчаливо предполагается, что уж все реальные явления со случайными исходами – такие, например, как возникновение погрешности измерений – этой регулярностью обладают. Но спросите любого, кто когда-нибудь занимался настройкой экспериментального оборудования, и он обязательно вспомнит день, когда вдруг ошибки измерений переставали вести себя «в рамках дозволенного», неожиданно выросли и стали «забивать» полезный сигнал. В арсенале каждого есть также и воспоминания о безуспешных попытках, вооружившись отверткой и паяльником, вернуть обезумевший шум в привычное русло, кончавшихся тем, что по неизвестной причине все само собой приходило в норму.
Фантастическое предположение, что характеристики погрешностей могут сами по себе изменяться со временем, причем синхронно в достаточно больших областях Вселенной, заставило ряд исследователей (в частности, научную группу под руководством профессора С. Э. Шноля) провести эксперименты по изучению шумовых процессов в разных точках земного шара. И обнаружилось, что, возможно, есть причины сомневаться в адекватности описывающей их стохастической модели. Складывается такое впечатление, что весь мир «дышит» – изменяет какие-то свои, неизвестные нам, параметры, и это отражается во всплесках шумовых сигналов, отмечающихся одновременно и в середине Тихого океана, и в подмосковном городке, и в Заполярье. Все это настолько непривычно для сложившихся на сегодняшний день представлений о реальности, что сообщения об этих исследованиях появляются пока лишь в очень осторожной форме.
Нечеткие модели
В 60-х годах XX века американский радиоинженер А. Заде опубликовал статью, которая положила начало новой науке, впоследствии получившей название нечеткой математики. В ней речь шла о так называемых нечетких множествах. В обычной математике множество элементов считается заданным, если про любой элемент известно, принадлежит он этому множеству или нет. Но можно придумать такие множества, про которые этого нельзя сказать однозначно.
Вот, например, множество высоких людей. Как его задать? Ну, если человек имеет рост под два метра, то, скорее всего, он принадлежит этому множеству. А вот если метр восемьдесят, кто-то и засомневается, стоит ли его считать высоким, – видали же мы все баскетболистов… Можно сказать, что он принадлежит этому множеству «до некоторой степени». Еще один пример – известный «парадокс кучи зерна». Два зернышка – не куча. Три – тоже, скорее всего, нет. Вот миллиард – ну, ясно, куча. А в промежутке?
В первом примере важно то, что чем выше человек, тем больше возможность включения его в «нечеткое множество высоких людей». Так же и во втором: чем больше зерен, тем больше возможность назвать их кучей. И хотя эта возможность какого-либо утверждения или события в нечеткой математике задается некоторым числом (нулем – если что-то невозможно, единицей – если вполне возможно, числом между нулем и единицей – если возможно до некоторой степени), конкретное ее числовое значение совершенно не важно, а используется исключительно для того, чтобы сравнить его со значением возможности другого события и выяснить, какое из них более возможно. Таким образом, с точки зрения нечеткой математики весь мир можно представить в виде событий, выстроенных в цепочку, в начале которой идут самые возможные события, а в конце – совершенно невозможные.
На первый взгляд такая математика кажется чрезвычайно бедной. Ну, действительно, как можно описать реальность, если нельзя использовать знания о количественных характеристиках явления, а только о порядке, определяемом его возможностью? Но тем не менее оказалось, что в рамках моделей теории возможности можно решать множество важнейших проблем, например, проблему оптимального выбора, ту самую, частные задачи которой мы постоянно и порой неосознанно решаем в своей жизни.
Действительно, ведь, для того чтобы выбрать стратегию поведения, влекущую наименьшие потери, нам в первую очередь важно знать, что все другие стратегии хуже, и только потом мы интересуемся, насколько хуже. А для ответа на первый вопрос и нужно лишь построить цепочку стратегий, упорядоченных по возможности потерь.