В масляных трансформаторах могут возникать частичные разряды при наличии микропузырьков воздуха, например, в бумажно-масляной изоляции. Однако такое явление исключительно редко встречается на практике благодаря технологии вакуумирования при заливке масла.
Анализ пробы газа, растворенного в масле, кроме точной диагностики повреждения дает возможность наблюдения за его развитием до срабатывания газового реле, что может оказаться полезным для более правильной оценки характера и последствий повреждения.
В целях более ранней диагностики повреждений из трансформаторов 2 раза в год отбирают пробы масла для хроматографического анализа газов, растворенных в масле.
Отбор пробы производится в следующей последовательности:
очищают от загрязнений патрубок крана, предназначенный для отбора пробы;
надевают на патрубок резиновый шланг;
открывают кран и промывают шланг маслом из трансформатора;
конец шланга поднимают вверх для удаления пузырьков воздуха;
на конце шланга устанавливают зажим;
иглу шприца вкалывают в стенку шланга;
забирают масло в шприц и сливают масло через иглу для промывки шприца;
повторяют операцию заполнения шприца маслом;
заполненный маслом шприц вкалывают иглой в резиновую пробку и в таком виде отправляют в лабораторию.
В лаборатории проводится анализ масла с применением хроматографа ЛХМ-8МД. Результаты анализа сравниваются с обобщенными данными состава и концентрации газа, выделяющегося при различных видах повреждений трансформаторов. После этого выдается заключение об исправности трансформатора или повреждении и степени его опасности.
По составу растворенных в масле газов можно определить степень перегрева токопроводящих соединений и элементов конструкции трансформатора, частичных электрических разрядов в масле, перегрева и старения твердой изоляции трансформатора.
Из всего сказанного следует, что правильный выбор конструкции и параметров силовых трансформаторов для тех или иных ПС должен быть сделан еще на стадии проектирования с учетом того, что разные условия эксплуатации требуют разных конструктивных решений; следует поддерживать эти параметры в процессе эксплуатации с соблюдением приведенных выше указаний и рекомендаций и сохранять их за счет надлежащего качества ремонта.
При аварии на трансформаторах используют специальные защиты. Например, на рис. 2.4 показана одна из таких защит с использованием короткозамыкателей.
При аварии на трансформаторе одного из присоединений (Т1) установленная на нем защита подаст напряжение на катушку включения соответствующего короткозамыкателя SC1. Короткозамыкатель замкнет свои контакты, создав искусственное замыкание на землю. На это замыкание среагирует защита магистральной ЛЭП, в зоне действия которой находится ПС, и с помощью головного выключателя Q отключит всю подстанцию. Через небольшой промежуток времени сработает автоматическое повторное включение (АПВ) и включит головной выключатель. В бестоковую паузу сработает отделитель поврежденного трансформатора Е1 и отключит его от сети. Таким образом, не используя отдельный выключатель на каждое присоединение, возможно отключить поврежденный участок, сохранив ПС в работе.
Глава 3. Обслуживание синхронных компенсаторов
3.1. Понятие о реактивной мощности. Режимы работы синхронных компенсаторов
Синхронная машина — это бесколлекторная машина переменного тока, у которой в установившемся режиме отношение частоты вращения ротора к частоте тока в цепи, подключенной к обмотке якоря, не зависит от нагрузки в области допустимых нагрузок (ГОСТ 27471-87).
Синхронный компенсатор (СК) — это синхронная машина, работающая без механической нагрузки, предназначенная для выдачи или потребления реактивной мощности (СТ МЭК 50(411)—73).
Энергосистема вырабатывает активную и реактивную энергию, между которыми имеется существенное различие.
Активная электроэнергия преобразуется в другие виды энергии (механическую, тепловую, световую и т. д.), необходимые для выполнения полезной работы.
Реактивная же энергия в другие виды энергии не переходит, а связана лишь с ее переносом от электрических полей к магнитным и обратно. Она создает условия, при которых активная энергия совершает работу, например, создает вращающие моменты в асинхронных двигателях, обеспечивает требуемое реактивное сопротивление в коротких цепях (например, при электросварке) и т. д.
Многие электроприемники наряду с активной мощностью потребляют и реактивную, причем у некоторых из них (например, у сварочных трансформаторов) доля потребления реактивной мощности превосходит долю потребления активной. Это вызывает дополнительные потери электроэнергии и напряжения в сети, ухудшает пропускную способность сетей и требует значительных затрат на компенсацию реактивной мощности.
С одной стороны, реактивная мощность необходима потребителям электрической энергии, например, приводным асинхронным двигателям (для создания вращающего момента на их валу), сварочным трансформаторам (для получения крутопадающей внешней характеристики вторичного контура сварочного трансформатора с целью стабилизации сварочного тока), люминесцентным светильникам, реакторам и др.
С другой стороны, для обеспечения надлежащих технико-экономических показателей работы электрических сетей и повышения их пропускной способности величину реактивной мощности стремятся снизить за счет ее компенсации.
Передача реактивной мощности связана с потерями энергии (активной и реактивной) практически во всех элементах электросети: в ЛЭП, трансформаторах и распределительных сетях.
СК являются экономичным регулируемым источником реактивной мощности в энергосистемах, особенно на ПС дальних ЛЭП высоких и сверхвысоких напряжений. С помощью СК в зависимости от изменения нагрузок регулируют напряжение на шинах приемной и промежуточных ПС, компенсируют потоки реактивной мощности по линиям и обеспечивают повышение их пропускной способности. Кроме того, СК поддерживают динамическую устойчивость энергосистем при КЗ.
Кроме синхронных генераторов источниками реактивной мощности в электрических сетях являются емкостные элементы сети: силовые конденсаторные батареи, ЛЭП (особенно ЛЭП высших классов напряжения), перевозбужденные синхронные двигатели, СК и др., работающие параллельно с генераторами электростанций.
Отдача или получение реактивной мощности связана в основном с уровнем возбуждения синхронной машины, а именно:
увеличение тока возбуждения приводит к увеличению генерирования реактивной мощности;
снижение тока возбуждения приводит к противоположному результату.
СК может работать в режимах недовозбуждения или перевозбуждения.
Режим недовозбуждения характеризуется тем, что если ток возбуждения уменьшать, то в токе, потребляемом СК от сборных шин ПС, будет возрастать индуктивная составляющая, что вызовет потребление из сети реактивной мощности с соответствующим возрастанием потерь в сети.
В режиме перевозбуждения ток возбуждения превышает ток ХХ и СК потребляет из сети опережающий ток, что соответствует отдаче в сеть реактивной мощности.
Таким образом, по отношению к сети СК в зависимости от тока возбуждения ведет себя как индуктивность или как емкость, являясь, соответственно, потребителем или источником реактивной мощности.
3.2. Системы возбуждения синхронных компенсаторов
При эксплуатации СК должны быть обеспечены их бесперебойная работа в допустимых режимах, надежное действие систем возбуждения, охлаждения, водоснабжения, маслоснабжения, устройств РЗиА и т. д.
Установленный режим работы СК по разным причинам (от изменения напряжения сети, при КЗ и т. д.) может самопроизвольно изменяться. Во многих таких случаях с целью поддержания устойчивости параллельной работы электростанций и снижения колебаний напряжения на шинах потребителей необходима автоматическая или ручная форсировка возбуждения.
В настоящее время применяются следующие системы возбуждения: электромашинная система, тиристорная реверсивная система (вместо ионного возбуждения), система бесщеточного возбуждения.
Электромашинная система возбуждения. При этой системе возбуждения возбудительный агрегат состоит из возбудителя постоянного тока, приводного асинхронного двигателя и подвозбудителя постоянного тока с самовозбуждением. В схеме автоматического регулирования напряжения имеется устройство компаундирования, состоящее из промежуточного трансформатора и выпрямителей. Выпрямленный ток изменяется пропорционально току статора.