Шрифт:
Интервал:
Закладка:
Подобные знаки замечены во многих домах на черных лестницах у дверей квартир. Обычно знаки этого типа имеются у всех дверей данного дома, причем в пределах одного дома двух одинаковых знаков не наблюдается. Их мрачное начертание, естественно, внушает тревогу жильцам. Между тем, смысл их, вполне невинный, легко раскрывается, если сопоставить их с номерами соответствующих квартир. Так, например, приведенные выше знаки найдены мною у дверей квартир № 12, № 25 и № 33:
Нетрудно догадаться, что кресты означают десятки, а палочки - единицы; так оказалось во всех без исключения случаях, которые мне приходилось наблюдать. Своеобразная нумерация эта, очевидно, принадлежит дворникам-китайцам[42], не понимающим наших цифр. Появились эти знаки, надо думать, еще до революции, но только сейчас обратили на себя внимание встревоженных граждан».
Таинственные знаки такого же очертания, но только не с прямыми, а с косыми крестами были обнаружены и в таких домах, где дворниками служили пришедшие из деревень русские крестьяне. Здесь уже нетрудно было выяснить истинных авторов тайнописи, вовсе и не подозревавших, что их безыскусственные обозначения №-ров квартир только теперь были замечены и вызвали такой переполох.
Старинная народная нумерация
Откуда взяли ленинградские дворники этот простой способ обозначения чисел: кресты - десятки, палочки - единицы? Конечно, не придумали этих знаков в городе, а привезли их из родных деревень. Нумерация эта давно уже в широком употреблении и понятна каждому, даже неграмотному крестьянину в самом глухом углу нашего Союза. Восходит она, без сомнения, к глубокой древности и употребительна не только у нас. Не говоря уже о родстве с китайскими обозначениями, бросается в глаза и сходство этой упрощенной нумерации с римской: и в римских цифрах палочки означают единицы, косые кресты - десятки.
Любопытно, что народная нумерация эта некогда была даже у нас узаконена: по такой именно системе, только более развитой, должны были вестись сборщиками податей записи в податной тетради. «Сборщик, - читаем мы в старом Своде Законов, - принимая от кого-либо из домохозяев вносимые к нему деньги, должен сам, или через писаря, записать в податной тетради против имени того домохозяина, которого числа сколько получено денег, выставляя количество принятой суммы цифрами и знаками. Знаки сии для сведения всех и каждого ввести повсеместно одинаковые, а именно:
Например, двадцать восемь рублей пятьдесять семь копеек три четверти:
В другом месте того же тома «Свода Законов» находим еще раз упоминание об обязательном употреблении народных числовых обозначений. Приводятся особые знаки для тысяч рублей - в виде шестиконечной звезды с крестом в ней, и для ста рублей - в виде колеса с 8 спицами. Но обозначения для рубля и десяти копеек здесь устанавливаются иные, чем в предыдущем законе.
Вот текст закона об этих так называемых «ясачных знаках»:
«Чтобы на каждой квитанции, выдаваемой Родовитому Старосте, от которого внесен будет ясак, кроме изложения словами, было показываемо особыми знаками число внесенных рублей и копеек так, чтобы сдающие простым счетом сего числа могли быть уверены в справедливости показания[43]. Употребляемые в квитанции знаки означают:
Дабы не можно было сделать здесь никаких прибавлений, все таковые знаки очерчивать кругом прямыми линиями. Например:
1232 р. 24 к. изображают так: (см. рис.)».
Как видите, употребляемые нами арабские и римские цифры - не единственный способ обозначения чисел. В старину применялись у нас, да и еще теперь по деревням применяются другие системы письменного счисления, отдаленно сходные с римскими и совсем не сходные с арабскими цифрами.
Но и это еще не все способы изображения чисел, употребляющиеся в наши дни: многие торговцы, например, имеют свои секретные знаки для числовых обозначений, - так называемые торговые «меты». О них побеседуем сейчас подробнее.
Секретные торговые меты
На вещах, купленных у офеней[44] или в частных магазинах, особенно провинциальных - вы, вероятно, замечали иногда непонятные буквенные обозначения вроде
Это не что иное, как цена вещи без запроса, которую торговец для памяти обозначает на товаре, но так, однако, чтобы ее не мог разгадать покупатель. Бросив взгляд на эти буквы, торговец сразу проникает в их скрытый смысл и, сделав надбавку, называет покупателю цену с запросом.
Такая система обозначения весьма проста, - если только знать «ключ» к ней. Торговец выбирал какое-нибудь слово, составленное из 10 различных букв; чаще всего останавливали выбор на словах: трудолюбие, правосудие, ярославецъ, миролюбецъ, Миралюбовъ. Первая буква слова означает - 1, вторая - 2, третья - 3 и т. д.; десятою буквою обозначается нуль. С помощью этих условных букв-цифр торговец и обозначает на товарах их цену, храня в строгом секрете «ключ» к своей системе обозначения.
Если, например, выбрано слово:
правосудие
1234567890,
то цена 4 р. 75 к. будет обозначена так:
Знак «пое» означает 1 р. 50 к. (150), пее - 1 рубль (100) и т. п.
Иногда цена на товаре бывает написана в виде дроби; например, на одной из купленных мною книг имеется обозначение
Это значит, при ключе «трудолюбие», что надо запросить 1 р. 25 коп., себе же книга стоила 50 коп.
Секрет своей меты торговцы строго берегут. Но если купить в одном и том же магазине несколько вещей, то, сопоставляя названную торговцем цену с соответствующими обозначениями, нетрудно догадаться о значении букв. Особенно легко разгадывать меты дешевых товаров, где запрашивают немного, так что первые цифры уплаченных сумм отвечают начальным буквам обозначения. Разгадав же несколько букв, легко доискаться значения остальных. При некоторой проницательности может быть разгадан «ключ» любой меты.
Допустим, например, что вы купили несколько вещей и заплатили за первую 25, за вторую - 22, за третью - 28 копеек. В уголках этих предметов вы находите такие обозначения
ро, рр, рд.
Ясно, что буква р означает 2. Отгадав, по другим товарам, еще одну букву, - например, с = 6, вы уже догадаетесь, что ключ - правосудие. Число подходящих слов, надо заметить, ограничено, и выбор не бывает чересчур затруднительным.
Арифметика за завтраком
После сказанного легко сообразить, что числа можно изображать не только с помощью цифр, но и с помощью любых иных знаков или даже предметов - карандашей, перьев, линеек, резинок и т. п.; надо только условиться приписывать каждому предмету значение какой-нибудь определенной цифры. Можно даже, ради курьеза, с помощью таких цифр-предметов изображать действия над числами - складывать, вычитать, умножать, делить. Вот, например, ряд действий над числами, обозначенный предметами сервировки стола (см. рис.). Вилка, ложка, нож, кувшинчик, чайник, тарелка - все это знаки, каждый из которых заменяет определенную цифру.
Задача № 2Глядя на эту группу ножей, вилок, посуды и т. п., попробуйте угадать: какие именно числа здесь обозначены?
С первого взгляда такая задача кажется очень трудной: приходится разгадывать настоящие иероглифы, как сделал некогда француз Шамполион. Но ваша задача гораздо легче: вы ведь знаете, что числа здесь, хотя обозначены вилками, ножами, ложками и т. п., написаны по десятичной системе счисления, т. е. вам известно, что тарелка, стоящая на втором месте (считая справа), есть цифра десятков, что предмет направо от нее - цифра единиц, а по левую сторону - цифра сотен. Кроме того, вы знаете, что расположение всех этих предметов имеет определенный смысл, который вытекает из сущности арифметических действий, производимых над обозначенными ими числами. Все это может значительно облегчить вам решение предложенной задачи.
РешениеВот как можно доискаться значения расставленных здесь предметов. Рассматривая первые три ряда на нашем рисунке, вы видите, что «ложка», умноженная на «ложку», дает «нож». А из следующих рядов видно, что «нож» без «ложки» дает «ложку», или что «ложка» + «ложка» = «ножу». Какая же цифра дает одно и то же и при удвоении и при умножении само на себя? Это может быть только 2, потому что 2 x 2 = 2 + 2. Таким образом узнаем, что «ложка» = 2 и, следовательно, «нож» = 4.
Теперь идем дальше. Какая цифра обозначена «вилкой»? Попробуем разгадать это, присмотревшись к первым трем рядам, где «вилка» участвует в умножении, и к рядам III, IV и V, где та же «вилка» фигурирует в действии вычитания. Из группы вычитания вы видите, что отнимая, в разряде десятков, «вилку» от «ложки», получаем в результате «вилку», т. е. при вычитании два минус «вилка» получается «вилка». Это может быть в двух случаях: либо «вилка» = 1, и тогда 2-1 = 1; либо же «вилка» = 6, и тогда, вычитая 6 из 12 (единица высшего разряда занимается у «чашки»), получаем 6.