Однако собственно катафатики бесконечного сразу не получается. Три века дифференциальное и интегральное исчисления остаются, скорее, просто методом, чем строгой научной теорией: есть алгоритмы, но нет понимания. Нет, в частности, и строгой теории действительного числа. Положение начинает меняться только во второй половине XIX столетия. Предлагаются, в частности, несколько конструкций числового континуума — и все они используют актуальную бесконечность. Наконец, с 70-х годов XIX века Г.Кантор начинает публиковать свои статьи по теории множеств, которая должна была стать именно наукой (арифметикой, анализом) бесконечного. В бесконечном, которое до этого выступало как единое, непознанное начало, действительно проводятся некоторые важные различения. Кантор выделяет: Абсолют — бесконечное в Боге, трансфинитное — бесконечное в сотворённом мире, и трансфинитные числа — предмет его теории, арифметика бесконечного. Он трезво формулирует (вначале), что наука не занимается Абсолютом, предметом богословия. По поводу бесконечного в природе у Кантора были некоторые научные гипотезы, которые, однако, никогда и никем не были проверены[143]. Оставались только трансфиниты, теория множеств. Здесь с самого начала были обнаружены серьёзнейшие парадоксы. Один из них — парадокс Бурали-Форти (1897) — показывал противоречивость самого понятия шкалы всех порядковых чисел (ординалов). Кантор пытается «вытолкнуть» этот парадокс за границу теории множеств новым различением: констистентных и неконстистентных множественностей. Теория множеств по определению занимается только консистентными множественностями, т. е. такими, которые «можно мыслить без противоречия». А множество всех ординалов — неконсистентно… Но остаётся вопрос: а как проверять бесконечное множество на консистентность? Почему мы уверены, что даже самое простое бесконечное множество N = {1,2,3….} есть консистентное множество (Р.Дедекинд)? Ответов на это получено не было…
Кроме того, Кантор и его ученики, которые довольно быстро выделили из построений учителя аксиоматику теории множеств, настаивали, чтобы бесконечность подчинялась определённым требованиям. Одно из них есть знаменитая аксиома выбора, формулировка которой кажется довольно естественной: если у нас есть бесконечное (скажем, счётное) множество непустых множеств, то можно образовать новое множество, содержащее только по одному элементу каждого из данных. При всей, казалось бы, простоте этого утверждения любые попытки как-то объяснить его, не говоря уже доказать, оказывались безуспешными. Положение напоминало ситуацию со знаменитым V постулатом Евклида и, исходя из опыта обсуждения этого постулата, из построения неевклидовой геометрии, естественно вставал вопрос: а, может быть, возможна теория множеств и без аксиомы выбора?.. Благодаря работам К.Геделя (1939) и П.Коэна (1963) была показана независимость аксиомы выбора от остальных аксиом теории множеств Цермело-Френкеля. Со временем вместо аксиомы выбора были предложены другие аксиомы (например, аксиома детерминированности), которые порождали другие, неканторовские, теории множеств и построенные на последних довольно необычные «неканторовские математики».
Аналогичная история была связана с так называемой континуум-гипотезой. Кантор безуспешно пытался доказать, что следующим кардиналом после мощности множества натуральных чисел является мощность стандартной арифметической модели континуума. Однако ни ему самому, ни его ученикам этого не удалось сделать. В 1963 году Коэн показал, что континуум-гипотезу нельзя ни доказать, ни опровергнуть в теории множеств Цермело-Френкеля.
Фундаментальное значение для философии науки имела теорема Геделя о неполноте, утверждающая, что в любой достаточно развитой аксиоматической теории (содержащей арифметику натуральных чисел) имеются истинные, но недоказуемые утверждения. Континуум-гипотеза и оказалась как раз таким утверждением. А теория множеств, тем самым, оказалась неполной и, более того, — непополняемой теорией, то есть, теорией, для которой нельзя привести исчерпывающего списка аксиом. Теорема Геделя обозначила естественные границы применимости аксиоматического метода. В то же время она как бы указывала границы и научному разуму вообще. Грубо говоря, теорема о неполноте утверждает, что не всё истинное можно доказать, не всё истинное открывается дискурсивному разуму. Есть вещи, которые понятны для нас, но недоказуемы: доступ к ним недискурсивен, сверхнаучен. Здесь само собой вспоминается знаменитое высказывание Паскаля из его «Мыслей»: «Сердце имеет свои резоны, которых разум совсем не знает»[144]. Многое понятное оказывается для нас, тем не менее, таинственным… Так и бесконечность, которая традиционно, со времён греческой науки, интерпретировалась апофатически, и которую наука нового времени попыталась «приручить», понять позитивно, вписав в рамки аксиоматического метода, всё таки проявила свою апофатическую природу: через неисчерпаемость непополняемых теорий…
Этими «понятными», но, в то же время, таинственными утверждениями оказываются для нас, прежде всего, аксиомы научных теорий. Лейбниц, этот величайший рационалист всех времён, пытается преодолеть данность аксиом через введение принципов более высокого порядка, которые должны были бы объяснить сами научные аксиомы. Он называл их архитектоническими принципами: принцип непрерывности (исключающий из мироздания все возможные «зияния»), принцип оптимума (наш мир есть наилучший из возможных), принцип законопостоянства[145]. К ним можно добавить принцип противоречия и принцип достаточного основания. Принципы эти действительно играют огромную роль в научном познании и, прежде всего, в сегодняшней науке. Через формулировку этих положений великий философ действительно углубил наше понимание познания, выделив в нём важные регулятивные начала науки, без которых она, собственно, никогда и не существовала, и которые естественно связывают её с другими сферами культуры. Но Лейбниц хотел большего. Мир, полностью объяснённый с помощью этих принципов, должен был бы представлять собой торжество научно-философской катафатики… Именно в такой перспективе и строится лейбницевская «Монадология». Но в лейбницевском мире нет творения из ничего, грехопадения, искупления; нет, вообще говоря, и трансцендентности Бога и человека — всего того, что составляет сердцевину христианского учения. Всё это связано с тайной свободы — Бога и человека, с тайной личности. И вообще говоря, для описания всего этого требуется другой язык[146]… Но и сам Лейбниц очень ярко и убедительно показывал, как тесно связаны идея свободы и бесконечности…[147] Именно поэтому бесконечность, входя в науку, неизбежно взламывает все утопические проекты чисто научной катафатики и приносит с собой веяния другого мира, в котором существует творчество, любовь, жертва, милосердие… Наука через свои архитектонические принципы, — прежде всего, закон достаточного основания и связанный с ним принцип недостаточного основания — заключает все свои построения в некотором ареале, вытесняя всё чуждое за его пределы. Но, однако, и наука, пытаясь найти обоснование своим аксиомам и началам, подходит, временами, к границам этого ареала, открывая апофатическую бездну бесконечной Божественной и богоданной человеку свободы.
Примечания
1
См., например: Галилей Г. Беседы и математические доказательства// Сочинения. М.-Л., 1934. Т.1.
2
Определение функции впервые даёт Г.-В.Лейбниц. См. в моей книге: Катасонов В.Н. Метафизическая математика XVII века. М., 1994. Гл. II.
3
Метафизические начала естествознания. С.58// Кант И. Сочинения в шести томах. Т.6. М., 1966.
4
См. в моей книге: Катасонов В.Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г.Кантора. — М..1999. С.99 — 102.
5
Блаженный Августин. О Граде Божием. Т.II,М.,1994. — С.269.
6
Хорошо известно, что подобным образом ставил вопрос о Боге в рамках своей философии естествознания Кант. См.:Кант И. Критика чистого разума. Трансцендентальная диалектика; глава «Идеал чистого разума»// Соч. в шести томах. Т.3. М., 1964. С. 501–592.
7