Рейтинговые книги
Читем онлайн Большая Советская Энциклопедия (МН) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 22

  Экспериментальные данные показывают, что масштабная инвариантность наблюдается при столкновениях не только элементарных частиц, но и атомных ядер при релятивистских энергиях.

  Из-за отсутствия полной и последовательной теории сильных взаимодействий для объяснения эмпирических закономерностей, обнаруженных в М. п., используются различные теоретические модели. В статистико-гидродинамических моделях [развитых в работах В. Гейзенберга , Э. Ферми , Л. Д. Ландау (1949—53) и др.] предполагается, что для сильно взаимодействующих частиц в течение короткого времени столкновения успевает установиться статистическое равновесие между образовавшимися в результате соударения частицами. Это позволяет рассчитать многие характеристики М. п., в частности среднюю множественность, которая должна расти с энергией по степенному закону Е n с показателем степени n < 1 (в теории Ферми — Ландау n = 1 /4 ). В другом классе моделей (итальянские физики Д. Амати, С. Фубини, А. Стангеллини и др., советские физики Е. Л. Фейнберг , Д. С. Чернавский и др.) считается, что рождение вторичных частиц происходит в «периферических» или «мультипериферических» взаимодействиях адронов, возникающих в результате обмена между ними виртуальным p-мезоном или другой частицей. С конца 60-х гг. для теоретического анализа М. п. широко используется представление о том, что сильное взаимодействие при высоких энергиях осуществляется путём обмена особым состоянием — «реджеоном», являющимся как бы струей частиц с монотонно меняющимся от частицы к частице импульсом (см. Сильные взаимодействия ). Эти представления (развитые, в частности, советскими физиками В. Н. Грибовым, К. А. Тер-Мартиросяном и др.) позволяют количественно объяснить многие закономерности М. п. Согласно «мультипериферическим» моделям и модели «реджеонов», средняя множественность должна расти пропорционально логарифму энергии столкновения.

  Лит.: Мурзин В. С., Capычева Л. И., Множественные процессы при больших энергиях, М., 1974 (в печати); Беленький С. З., Ландау Л. Д., Гидродинамическая теория множественного образования частиц, «Успехи физических наук», 1955, т. 56, в. 3, с. 309; Фейнберг Е. Л., Множественная генерация адронов и статистическая теория, там же, 1971, т. 104, в. 4, с. 539; Feynman R., Very high-energy collisions of hadrons, «Physical Review Letters», 1969, v. 23, p. 1415; Ежела В. В. [и др.]. Инклюзивные процессы при высоких энергиях, «Теоретическая и математическая физика», 1973, т. 15, № 2; Тер-Мартиросян К. А., Процессы образования частиц при высокой энергии, в кн.: Материалы 6-й зимней школы по теории ядра и физике высоких энергий, ч. 2, Л., 1971, с. 334; Розенталь И. Л., Множественные процессы при больших энергиях, «Природа», 1973, № 12.

  С. С. Герштейн.

Рис. 3. График, иллюстрирующий масштабную инвариантность в инклюзивном процессе р+р®p- +Х (р — протон, p- — отрицательный p-мезон, Х — совокупность остальных адронов, родившихся в реакции). Зависимость величины (2/p)xds/dx, пропорциональной дифференциальному сечению рождения p- -мезона ds/dx, от х=р L /p мaкс ; экспериментальные данные при различных энергиях столкновения с точностью до ошибок измерения укладываются в универсальную зависимость от х. Разными значками помечены данные, относящиеся к различным энергиям (импульсам) столкновения в лабораторной системе; точки при 1500, 1100, 500, 270 Гэв /с получены в опытах на ускорителе со встречными пучками в ЦЕРНе, при 70 Гэв /с — в советско-французском эксперименте в Серпухове.

Рис. 1. Фотография множественного рождения заряженных частиц, полученная в жидководородной пузырьковой камере «Мирабель», помещенной в пучок p-мезонов с энергией 50 Гэв на Серпуховском ускорителе.

Рис. 2. Среднее число вторичных заряженных частиц как функция кинетической энергии Q сталкивающихся частиц в системе их центра инерции. Разными значками обозначены результаты, относящиеся к рассеянию p± -, К± -мезонов и протонов на нуклонах.

Множество

Мно'жество (математическое), см. Множеств теория .

МНР

МНР, сокращённое название Монгольской Народной Республики .

1 ... 13 14 15 16 17 18 19 20 21 22
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (МН) - БСЭ БСЭ бесплатно.

Оставить комментарий