Государственный флаг на «Арктике» подняли 25 апреля 1975 года на рейде Таллина. В начале июня атомоход провел по Северному морскому пути на восток дизель-электрический ледокол «Адмирал Макаров». В октябре 1976 года вырвал из ледового плена ледокол «Ермак» с сухогрузом «Капитан Мышевский», а также ледокол «Ленинград» с транспортом «Челюскин». Пришедший на смену Кучиеву капитан А.А. Ламехов назвал те дни «звездным часом» нового атомохода. Но, наверное, настоящим «звездным часом» для ледокола стало покорение Северного полюса.
Исследовать Северный Ледовитый океан с мощного ледокола предлагал адмирал С.О. Макаров. В 1899 году построенный по его проекту «Ермак» совершил два полярных похода. «Ни один корабль не отваживался входить во льды, в то время как «Ермак» свободно прогуливался по льдам к северу от Семи островов», – писал Степан Осипович.
В 1909 году в России начали работать ледокольные транспорты специальной конструкции «Таймыр» и «Вайгач», оснащенные всем необходимым для научных работ. В 1910—1915 годы они совершили ряд экспедиций по трассе будущего Северного морского пути, во время которых был открыт архипелаг Северная Земля.
В 1930—1940-е годы, когда в Советском Союзе началось освоение Крайнего Севера и Дальнего Востока, тем, кто изучал арктические моря, предоставляли хорошо приспособленные для полярных акваторий ледокольные пароходы, например, «Г. Седов», ледорез «Ф. Литке», а то и ледоколы, если те не были заняты проводкой караванов. В 1934—1937 годах в Ленинграде построили гидрографические суда ледового класса «Мурман», «Океан» и «Охотск». Это были первые в мире научно-исследовательские суда, рассчитанные на длительные плавания на Севере.
После Второй мировой войны основательное изучение Арктики начали и другие страны. Так, в 1953—1955 годах на верфи «Ингалл» для военного флота США построили «Глесьер». В основе его проекта были серийные ледоколы типа «Уинд», но водоизмещение увеличили до 8700 тонн. Силовая установка мощностью 21000 лошадиных сил состояла из десяти дизелей, работавших на генераторы, а те подавали напряжение на два электродвигателя «Вестингауз», вращавших гребные винты. До появления советского атомохода «Ленин» американский ледокол считался самым мощным в мире.
Но никто, кроме «Арктики», не решился покорить Северный полюс. В августе 1977 года ледокол отправился в свой знаменитый поход.
О нем написали в своей книге участники экспедиции В.А. Спичкин и В.А. Шамонтьев: «Многолетний сибирский – ледокол форсирует напролом, скорость его продвижения, конечно, невелика, но зато сам ход необычайно красив. Как известно, ледокол разрушает прочный лед не ударом форштевня, а, продавливая его своей массой: чем прочнее лед, тем большая часть ледокола должна всползти на него, чтобы вызвать разрушение. При этом место разломов льда смещается от носовой части к середине судна. При разрушении очень прочного льда места ломки смещаются настолько далеко от форштевня, что они даже не просматриваются из передних иллюминаторов ходовой рубки. Это создает фантастическое впечатление, будто весь огромный атомоход скользит по льду, как аэросани. Это тихое плавное продвижение, когда перед носом судна не видно ни трещины, ни ломающегося льда, ни фонтана ледяных брызг, делает эффект скольжения столь реальным, что, кажется, за кормой ледокола не должно быть обычного канала. Но взгляд назад, за корму, где по-прежнему темнеет широкая дорога чистой воды, убеждает, что ледокол не скользит, а крушит эти поля многолетнего льда. Возле средней части ледокола дыбятся стотонные глыбы раздавленного льда».
«Арктику» спроектировало центральное конструкторского бюро «Айсберг», организованное в Ленинграде в 1947 году. На его счету также такие этапные суда, как атомный ледокол «Ленин», дизель-электроход «Добрыня Никитич», транспорты «Амгуэма». А в начале 1990-х годов там спроектировали двухвальный ледокол ЛК-110Я с двумя реакторами. Общая мощность силовой установки составила бы не менее 110 МВт, водоизмещение – 55000 тонн, длина – 200 метров, ширина – 36 метров, осадка – 13 метров. Такие «лидеры» могли бы круглогодично трудиться в Северном Ледовитом океане, прокладывая путь караванам в любых условиях.
Волоконно-оптические линии связи
История световой связи началась еще в доисторические времена, когда дозорные сигнальными кострами предупреждали своих о приближении врага. В начале XIX столетия Наполеон вложил немало средств в «зеркальный телеграф» вдоль побережья Атлантики. Таким образом, император хотел получать оперативную информацию о нарушителях «континентальной блокады», чтобы беспощадно карать этих пособников англичан.
Но изобретение радиосвязи, казалось, похоронило саму идею световой связи. Однако постепенно выяснилось, что при всех достоинствах традиционных видов связи каждому из них присущ и целый ряд недостатков, которые становятся все более чувствительными по мере нарастания объемов передаваемой информации. Несмотря на новейшие технологии, позволяющие значительно уплотнить передаваемую по кабелю информацию, магистральные телефонные линии все равно часто оказываются перегруженными. Примерно то же можно сказать о радио и телевидении, в которых информационные сигналы переносятся с помощью электромагнитных волн: все возрастающее количество телеканалов и радиостанций, вещательных и служебных, привело к возникновению помех, к ситуации, получившей название «тесноты в эфире». Это стало одним из толчков к освоению все более коротковолновых диапазонов радиоволн.
Еще один недостаток традиционных видов связи состоит в том, что для передачи информации вообще невыгодно пользоваться волнами, излучаемыми в свободное пространство. Ведь энергия, приходящаяся на какую-то определенную площадь фронта такой волны, убывает по мере увеличения фронта волны. Для сферической волны, то есть такой, которая распространяется равномерно во все стороны от источника, ослабление обратно пропорционально квадрату расстояния от источника волны до приемника.
Эра современной оптической связи началась в 1960 году после создания первого лазера. Изобретение лазеров вообще породило надежду на быстрое и легкое преодоление проблем «эфирной тесноты» Появилась надежда на то, что использование микронных волн видимого света для нужд связи вместо сантиметровых и миллиметровых радиоволн позволит почти беспредельно расширить объемы передаваемой информации.
Увы, уже первые опыты развеяли радужные иллюзии. Выяснилось, что земная атмосфера очень активно поглощает и рассеивает оптическое излучение. А потому лазеры могут использоваться для нужд связи лишь на очень небольшом расстоянии: в среднем не более километра.
Так обстояли дела до тех пор, пока в 1966 году двое японских ученых Као и Хокэма не предложили использовать для передачи светового сигнала длинные стеклянные волокна, подобные тем, которые уже использовались в эндоскопии и других областях.
Согласно законам оптики, если направить световой луч из более плотной среды в менее плотную, то значительная часть его отражается обратно от границы двух сред. При этом, чем меньше угол падения луча, тем большая часть светового потока окажется отраженной. Путем эксперимента можно подобрать такой пологий угол, при котором отражается весь свет и лишь ничтожная его часть попадает из более плотной среды в менее плотную. Свет при этом оказывается словно заключенным в плотной среде и распространяется в ней, повторяя все ее изгибы. Лучи, идущие под малым углом к границе двух сред, полностью отражаются от нее. Таким образом, оболочка прочно удерживает их, обеспечивая светонепроницаемый канал для передачи сигнала практически со скоростью света.
Будь световод идеальным, изготовленным из абсолютно прозрачного и однородного материала, световые волны должны распространяться не ослабевая. На самом деле практически все реальные световоды достаточно сильно поглощают и рассеивают электромагнитные волны из-за своей непрозрачности и неоднородности.
Понадобилось целое десятилетие для того, чтобы создать лабораторные образцы волоконных световодов, способных передать на один километр один процент введенной в них мощности света. Следующей задачей было изготовить из такого волокна световодный кабель, пригодный для практического применения, разработать источники и приемники излучения.
Радикальное изменение ситуации было связано с созданием двухслойных световодов. Такие световоды состояли из световодной жилы, заключенной в прозрачную оболочку, показатель преломления которой был меньше, чем показатель преломления жилы. Если толщина прозрачной оболочки превосходит несколько длин волн передаваемого светового сигнала, то ни пыль, ни свойства среды вне этой оболочки не оказывают существенного влияния на процесс распространения световой волны в двухслойном световоде. Подобные световоды можно покрывать полимерной оболочкой и превращать их в световедущий кабель, пригодный для практического применения. Но для этого необходимо создать совершенную границу между жилой и прозрачной оболочкой. Наиболее простая технология изготовления световода состоит в том, что стеклянный стержень-сердцевина вставляется в плотно подогнанную стеклянную трубку с меньшим показателем преломления. Затем эта конструкция нагревается.