«Арифметика» Магницкого как учебник была в школьном употреблении почти до середины XVIII века. По ней учился и М. В. Ломоносов.
На могильном камне в память о Л. Ф. Магницком высечена эпитафия, рассказывающая потомкам про самоотверженного труженика науки, человека большой души, верного сына своего отечества:
«В вечную память… добродетельно пожившему Леонтию Филипповичу Магницкому, первому в России математики учителю зде погребенному, мужу… любви к ближнему нелицемерной, благочестия ревностного, жития чистого, смирения глубочайшего, великодушия постоянного, нрава тишайшего, разума зрелого, обхождения честного, праводушия любителю, в случаях отечеству усерднейшему попечителю, подчиненным отцу любезному, обид от неприятелей терпеливейшему, ко всем приятнейшему, и всяких обид, страстей и злых дел силами чуждающемуся, в наставлениях, в рассуждении, совете друзей искуснейшему, правды как о духовных, так и гражданских делах опаснейшему хранителю, добродетельного жития истинному подражателю, всех добродетелей собранию; который путь сего временного и прискорбного жития начал 1669 года июня 9-го дня, наукам изучился дивным и неудобовероятным способом, его величеству Петру первому для остроумия в науках учинился знаем в 1700 году и от его величества, по усмотрении нрава ко всем приятнейшего и к себе влекущего, пожалован, именован прозванием Магницкий и учинен российскому благородному юношеству учителем математики, в котором звании ревностно, верно, честно, всеприлежно и беспорочно служа и пожив в мире 70 лет, 4 месяца и 10 дней, 1739 года, октября 19-го Дня, о полуночи в 1 часу, оставя добродетельным своим житием пример оставшим по нем, благочестно скончался…
Не по должности написал горькослезный Иван, нижайший раб, сын ему любезный»[35].
Леонард Эйлер (1707–1783)
апреля 1707 года в небольшом швейцарском городе Базеле в семье священника Пауля Эйлера родился ребенок, которому было суждено стать ярким светилом науки. Ребенка назвали Леонардом.
Пауль Эйлер был человеком весьма разносторонних знаний. Кроме богословия, он хорошо знал математику, которой отдавал почти все свободное время. Вкус к этой науке привил ему знаменитый математик Якоб Бернулли, с которым Эйлер был в дружеских отношениях.
Пауль Эйлер мечтал передать свою профессию сыну и, полагая, что священник должен обладать большой и разносторонней подготовкой, сам занялся воспитанием ребенка. Он привил сыну любовь к математике, обнаружив в нем зачатки большого дарования.
Среднее образование Леонард Эйлер получил в базельской гимназии. Обладая прекрасной памятью и умением логически рассуждать, он легко справлялся со всеми изучаемыми в гимназии предметами. Свободное время посвящал занятиям математикой. Он стал посещать лекции знаменитого математика Иоганна Бернулли (младшего брата Якоба Бернулли), которые тот читал в Базельском университете.
Леонард ЭйлерСкоро профессор заметил необыкновенный талант Эйлера и счел своим долгом заниматься с ним у себя на дому. Методика этих занятий заключалась в том, что Эйлер был обязан самостоятельно штудировать самые трудные книги по математике и являться к профессору по субботам для консультаций и выяснения темных мест из прочитанного. Ученик был в восторге от этих занятий. «Причем это настолько достигало желанной цели, — заявлял Эйлер, — что когда он [профессор] устранял передо мной одно препятствие, тем самым тотчас же исчезали десять других, а это, разумеется, есть наилучший метод, чтобы добиться счастливых успехов в математических науках»[36]. Под руководством Иоганна Бернулли молодой Эйлер достиг вершин математической науки, прочитав и усвоив труды самых знаменитых математиков того времени.
Эйлеру было всего 16 лет, когда он на латинском языке произнес речь, в которой дал сравнительный анализ философии Ньютона и Декарта. За эту речь Эйлеру была присвоена ученая степень магистра искусств.
Занимаясь на дому у Иоганна Бернулли, Эйлер крепко подружился с сыновьями своего учителя — Николаем и Даниилом, которые впоследствии стали видными учеными-математиками и работали по приглашению в Петербургской академии наук. После неудачной попытки устроиться на работу в Базельском университете двадцатилетний Эйлер по рекомендации братьев Бернулли занял кафедру физиологии Петербургской академии наук.
Спустя два года Эйлер стал профессором физики, а через год получил кафедру математики.
За первые четырнадцать лет, проведенных в России, Эйлером проделана удивительно большая работа. За это время он опубликовал около 70 научных трудов, был консультантом и экспертом по разным вопросам науки и техники. К нему обращались за советами, как увеличить чувствительность весов для взвешивания монет, как поднять большой колокол на одну из московских церквей, как улучшить качество пожарного насоса и т. д.
Всегда исполнительный, он никогда не отказывался от поручаемой работы. Говорят, что только один раз он отказался от «государственного» поручения составить таблицу расположения звезд, по которой можно было бы судить о судьбе царевича Ивана Антоновича.
В 1736 году Эйлер лишился глаза. Рассказывают, что перед этим он в течение трех суток выполнил весьма громоздкую вычислительную работу, на которую другие академики требовали несколько месяцев.
В тревожное время регентства Анны Леопольдовны, когда на ученых стали смотреть с большим подозрением, Эйлеру пришлось покинуть пределы России и переехать в Берлин, куда его давно приглашал прусский король Фридрих II.
В Германии Эйлер занял пост директора класса математики и члена правления Берлинской академии наук. За 25 лет берлинской жизни Эйлер написал около 300 научных работ, среди которых имеется ряд больших монографий.
Фридрих II пожелал, чтобы Эйлер давал уроки физики и математики его племяннице, принцессе Ангольт-Дессауской. К занятиям с принцессой Эйлер тщательно готовился. Эти уроки потом были опубликованы под названием «Письма к немецкой принцессе». Сочинение это, переведенное на все европейские языки, умножило славу Эйлера.
Россия никогда не считала Эйлера иностранцем. Даже тогда, когда Эйлер покинул Петербург, ему, как петербургскому академику, выплачивалась пенсия. В 1766 году Екатерина II пригласила Эйлера в Петербург. Знаменитый ученый охотно согласился вернуться в Россию, где прошли лучшие годы его жизни.
Вскоре по возвращении в Петербург Эйлер потерял и второй глаз. Но это не сломило его. Он по-прежнему проводил научные исследования, результаты которых под диктовку записывали его сыновья и близкие друзья.
За последние 17 лет жизни в Петербурге Эйлером было подготовлено около 400 научных работ и несколько больших книг. За один только 1777 год он написал около 100 статей.
Эйлер дружил с Ломоносовым и много сделал для подготовки научных и технических кадров в России. Он с интересом относился к работам И. П. Кулибина и оказывал поддержку в реализации некоторых его изобретений.
В 1771 году Эйлер пережил катастрофу. На той улице, где он жил, начался пожар. Пламя вскоре охватило и дом ученого. Слепого и больного Эйлера вытащили из огня. Мебель и библиотека погибли. Удалось спасти только рукописи. Но и это пережил старик. Казалось, ничто не может сломить его творческого гения.
18 сентября 1783 года у Эйлера был в гостях русский астроном А. И. Лексель, часто помогавший слепому ученому в оформлении его работ по астрономии. В этот раз оба друга были заняты вычислениями орбиты планеты Гершеля. После обеда Эйлер велел позвать внука и стал играть с ним. Вдруг трубка, которую он держал, выпала из рук и он успел только крикнуть: «Умираю». Наступила моментальная смерть от апоплексического удара.
Эйлеру принадлежат открытия во всех областях современной ему математики, математической физики и механики. В своих работах по математическому анализу он заложил основы ряда математических дисциплин. Так, он положил основания теории функций комплексного переменного, теории обыкновенных дифференциальных уравнений и уравнений в частных производных. Явился создателем вариационного исчисления и многих приемов интегрирования.
Эйлер внес большой вклад в алгебру и теорию чисел, где его результаты являются классическими и известны в науке под названием формул и теорем Эйлера.
Используя специально подобранную символику, Эйлер облегчил язык математики, сделал ее более обозримой и доступной. Он, например, ввел сокращенные обозначения тригонометрических функций угла х: tg х, ctg х, sec х, cosec х (обозначения sin х и cos х были введены И. Бернулли).