Рейтинговые книги
Читем онлайн 6a. Электродинамика - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 41

Итак, единственное, что мы должны сделать для определения скорости v,— это измерить напряжение между концами про­вода. Хотя для этой цели мы не можем воспользоваться вольт­метром, ибо то же самое поле будет действовать и на провода внутри вольтметра, способы измерения таких полей все же существуют. О некоторых из них мы уже говорили в гл. 9 (вып. 5), когда рассказывали об атмосферном электричестве. Так что измерить скорость самолета, казалось бы, можно.

Однако эта важная проблема не была решена таким методом. Дело в том, что величина электрического поля, которое при этом развивается,— порядка нескольких милливольт на метр. Измерить такие поля, конечно, можно, но вся беда в том, что они ничем не отличаются от любых других электрических полей. Поля, создаваемые движением через магнитное поле, нельзя отличить от электрических полей, возникающих в воздухе по каким-то другим причинам (скажем, от электростатических зарядов в воздухе или на облаках). В гл. 9 мы говорили, что обычно над поверхностью Земли существуют электрические поля с напряженностью около 100 в/м, но они совершенно нере­гулярные. Так что самолет во время полета будет наблюдать флуктуации атмосферных электрических полей, которые огром­ны по сравнению со слабенькими полями, возникающими из-за множителя vXB. Ввиду этих чисто практических причин изме­рить скорость самолета, используя его движение в магнитном поле Земли, невозможно.

§ 4. Уравнения движения в релятивистских обозначениях

Полученные из уравнений Максвелла электрические и маг­нитные поля сами по себе не представляют особой ценности, если мы не знаем, что эти поля могут делать, на что они способны.

Вы, вероятно, помните, что поля нужны для нахождения действующих на заряды сил и что именно эти силы определяют их движение. Так что связь движения зарядов с силами, разу­меется, тоже есть часть электродинамики.

На отдельный заряд, находящийся в полях Е и В, действует

(26.23)

При небольших скоростях эта сила равна произведению массы на ускорение, но истинный закон, справедливый при любых скоростях, гласит: сила равна dp/dt. Подставляя p=m0v/Ц(1-v2/c2), находим релятивистское уравнение движения заряда:

(26.24)

Теперь мы хотим обсудить это уравнение с точки зрения тео­рии относительности. Поскольку уравнения Максвелла запи­саны у нас в релятивистской форме, интересно посмотреть, как в релятивистской же форме выглядят уравнения движения. Посмотрим, можно ли переписать уравнения движения в четы­рехмерных обозначениях.

Мы знаем, что импульс есть часть четырехмерного вектора pm с энергией m0/Ц(1-v2/с2) в качестве временной компоненты, так что мы надеемся заменить левую часть уравнения (26.24) на dpm/dt. Теперь нам нужно найти только четвертую компоненту силы F. Эта компонента должна быть равна скорости изменения энергии или скорости совершения работы, т. е. F·v. Так что правую часть уравнения (26.24) желательно было бы записать в виде четырехвектора типа (F·v, Fx, Fy , Fz), Однако эти вели­чины не составляют четырехвектора.

Производная четырехвектора по времени не будет больше четырехвектором, так как d/dt требует для измерения t неко­торой специальной системы отсчета. С этой трудностью мы уже сталкивались раньше, когда пытались сделать четырехвектор из скорости v. Тогда мы попытались считать, что роль временной компоненты скорости играет cdt/dt=c. Но на самом деле величины

(26.25)

не образуют четырехвектора. После этого мы обнаружили, что их можно превратить в компоненты четырехвектора, если помножить каждую на 1

/Ц(1-v22). «Четырехмерной ско­ростью» umоказался вектор

(26.26)

Вот в чем фокус! Нужно умножать производную d/dt на 1/Ц(1-v2/с2), если мы хотим превратить ее компоненту в четырехвектор.

Итак, вторая гипотеза: четырехвектором должна быть ве­личина

(26.27)

Но что такое v? Это уже скорость частицы, а не скорость системы координат! Таким образом, обобщением силы на четырехмерное пространство будет величина fm:

(26.28)

которую мы назовем «4-силой». Она уже четырехвектор, и ее пространственными компонентами будут уже не F, а

F/Ц(1-v2/c2).

Почему же fm четырехвектор? Неплохо бы понять, что это за таинственный множитель 1/Ц(1-v2/с2). Так как мы встре­чаемся с ним уже второй раз, то самое время посмотреть, почему производная d/dt всегда должна входить с одним и тем же

множителем. Ответ заключается вот в чем. Когда мы берем производную по времени некоторой функции х, то подсчитываем приращение Dx за малый интервал Dt переменной t. Но в другой

системе отсчета интервал At может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Dx, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Dt, так и Dx, Dy, Dz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора хm=(сt, х, у, г), так что, если определить величину Ds через

что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из вели­чины As или ее предела ds, мы можем определить параметр

Хорошим четырехмерным оператором будет и производ­ная по s, т. е. d/ds, так как она инвариантна относительно пре­образований Лоренца.

Для движущейся частицы ds легко связывается с dt. Для точечной частицы

(26.30)

а

Таким образом, оператор

есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости

Теперь мы видим, почему Ц(l-v2/c2)поправляет дело.

Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траекто­рии частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.

Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:

(26.32)

где fm определяется формулой (26.28). Импульс же рmможет быть записан в виде

(26.33)

где координаты xm=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:

(26.34)

напоминающей уравнения F=ma. Важно отметить, что урав­нения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую ме­ханику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в реляти­вистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.

Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.

Три компоненты F, поделенные на Ц(1-v2/c2), составляют про­странственные компоненты fm , так что

Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1-v2/c2), vy/Ц(1-v2/c2) и vz/Ц(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости um. Компоненты же Е и В входят в электромагнитный тензор вто­рого ранга Fmv. Отыскав в табл. 26.1 компоненты Fmv, соответ­ствующие Ех, Вги Вv , получим

1 ... 22 23 24 25 26 27 28 29 30 ... 41
На этой странице вы можете бесплатно читать книгу 6a. Электродинамика - Ричард Фейнман бесплатно.

Оставить комментарий