Рейтинговые книги
Читем онлайн Естествознание. Базовый уровень. 10 класс - Сергей Титов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 77

Рис. 66. Для получения чистого тона используют камертон: А – чем больше амплитуда колебаний, тем громче будет издаваемый камертоном звук. Б – при прочих равных условиях большой камертон будет колебаться с частотой, меньшей, чем маленький, и, следовательно, издавать более низкий звук

Причина состоит в том, что в реальном звуке, помимо основного тона, присутствуют дополнительные, более слабые гармонические колебания с большей или меньшей частотой. Они называются обертонами, и их совокупность, соотношение их амплитуд и фаз определяет тембр звука. Именно благодаря тембру мы различаем звучание различных музыкальных инструментов и голоса различных людей.

Звуки и музыка

На рисунке 67 показаны записи звуковых колебаний, созданных роялем и кларнетом. Они представляют один и тот же звук, соответствующий частоте 100 Гц. Мы видим, что основной период колебаний в обоих случаях одинаков, но обертоны представлены с разными амплитудами и фазами.

Тембр музыкального инструмента играет огромную роль в искусстве. Основной тон струнного инструмента, например скрипки или гитары, определяется длиной и толщиной струны, генерирующей гармонические колебания.

Рис. 67. Записи звуковых колебаний, созданных роялем и кларнетом

Перебирая лады, мы изменяем длину звучащего участка струны и тем самым меняем высоту звука, от которой зависит звучащая нота. Сопровождающие её обертоны определяют качество звучания, степень приятности восприятия звука. Обертоны в значительной степени зависят от конструкции инструмента, и изменить их исполнитель не в состоянии. Поэтому существуют особо ценные музыкальные инструменты, такие как скрипки Амати или Страдивари, до сих пор не имеющие себе равных (рис. 68). Большое значение имеет также акустика помещений, в которых происходит исполнение музыкального произведения. Стены, пол, потолок и находящиеся там предметы могут отражать или поглощать звуковые волны, которые затем резонируют и складываются в различных сочетаниях, создавая неповторимую акустику зала. При проектировании концертного зала желательно, чтобы звуки, доносящиеся со сцены, звучали отчётливо и громко, а те, которые вольно или невольно производятся соседями по залу, приглушались и достигали слуха в наименьшей степени.

Рис. 68. Скрипка Страдивари

В современной музыкальной культуре широко используют музыкальные синтезаторы, с помощью которых можно не только создать мелодию, но и придать ей необходимый набор обертонов, имитируя таким образом звучание любого музыкального инструмента. Современные синтезаторы позволяют моделировать не только инструмент в целом, но и отдельные его характеристики, такие как длина, профиль и диаметр трубы, скорость воздушного потока, материал корпуса; для струнных инструментов – размер корпуса, материал, длина и натяжение струн и т. д.

Многое в восприятии музыкального произведения зависит от мастерства исполнителя. Он по своему усмотрению может менять интервалы между отдельными нотами и соотношение их громкости, т. е. амплитуды производимых колебаний. Уровень исполнения и индивидуальные особенности исполнителя определяются тем, как он распределяет звуки на том временном интервале, в котором исполняется произведение. Различное построение одной и той же мелодии во времени во многом определяет различия в восприятии её слушателями.

В теории музыки существуют понятия консонанса и диссонанса. Сочетание консонирующих нот вызывает у человека чувство покоя, расслабленности, умиротворённости, а сочетание диссонирующих – беспокойство и стремление к движению. В прошлое время в музыкальной традиции преобладало стремление к консонансу, он использовался при создании большинства музыкальных произведений. В динамичном и тревожном времени конца XIX и в XX в. появилась тенденция к широкому использованию диссонансных сочетаний нот. Это отчётливо проявилось в творчестве А. Н. Скрябина, С. С. Прокофьева, И. Ф. Стравинского и других композиторов. С точки зрения физической теории звука различие между консонансом и диссонансом заключается в том, что в первом случае частоты входящих в аккорд нот соотносятся как небольшие целые числа. Каждая нота в определённой октаве имеет частоту ровно в два раза ниже, чем в более высокой октаве. Соотношение частот в квинте составляет 2: 3, а в кварте – 3: 4. В диссонансных звучаниях соотношения частот определяются большими числами, например 19: 23.

Можно уйти ещё дальше от периодичности колебаний. Если, например, мы одновременно ударим по многим клавишам рояля в совершенно случайном сочетании, то вообще не получим музыкального звучания. Получаемый при этом звук называют шумом. Шумы состоят из огромного числа колебаний с разными частотами. Они могут быть либо длинными, но очень сложными по форме (скрип, шипение), либо короткими (стук, щелчок). К шумам можно также отнести все произносимые нами согласные звуки.

Проверьте свои знания

1. В каких средах может возникать звук?

2. Каков частотный диапазон слышимости человека?

3. Что такое ультра– и инфразвуковые колебания?

4. Чем определяется тембр звука?

Задания

Проведите исследование. Возьмите сосуд, из которого можно откачивать воздух, и поместите туда электрический звонок. Как будет меняться громкость звонка по мере откачивания воздуха? Почему?

§ 26 Электростатическое взаимодействие

Закон Кулона играет джаз,Закон Кулона волнует нас,Закон Кулона и здесь и там,Закон Кулона известен нам.

Сила по Кулону – ку на ку,Сила по Кулону – ку на ку,Сила по Кулону – ку на ку,Делённая на эр квадрат.

Студенческая песня

Слово «электричество» происходит от греческого названия янтаря («электрон»). Ещё в Древней Греции люди заметили, что, если потереть кусочек янтаря мягкой тканью или просто сухой ладонью, он начинает притягивать к себе мелкие предметы. Другие вещества тоже в какой-то мере обладали этой способностью, но поскольку янтарь по силе притяжения превосходил их все, то явление было названо в его честь.

История изучения электричества.

Экспериментальным изучением электричества никто не занимался вплоть до 1600 г., когда англичанин Уильям Гильберт (1544–1603) сконструировал прибор, состоящий из стерженька, подвешенного наподобие магнитной стрелки, назвал его версором и стал проводить исследования. С помощью этого первого электроскопа Гильберт показал, что притягивать может не только натёртый янтарь, но и алмаз, сапфир, опал, сера, сургуч и стекло (рис. 69). Все эти тела он назвал электрическими телами. Он также установил, что «электрические тела» могут притягивать «металлы, дерево, листья, камни, комки земли и даже воду и масло». В середине того же XVII в. появилось абстрактное понятие самого явления – электричество. Наиболее наглядно электрические явления были продемонстрированы немецким исследователем Отто фон Герике (1602–1686), который изготовил вращающийся шар из плавленой серы. После того как этот шар натирали сухой ладонью, он приобретал замечательные свойства. Особенно интересным был опыт с пушинкой, которая, оттолкнувшись от шара, продолжала ещё некоторое время находиться «в сфере его действия», перемещаясь вместе с ним по комнате.

Рис. 69. Янтарь и алмаз, сапфир и опал, серу, сургуч и стекло Уильям Гильберт назвал электрическими телами

Герике также заметил, что если наэлектризовать шар в темноте, то он сверкает «подобно сахару, раздробляемому пестиком», при этом слышно характерное потрескивание. Через некоторое время опыт Герике был воспроизведён англичанином Робертом Бойлем (1627–1691), который получил аналогичные результаты и, кроме того, показал, что воздействие электрической силы проявляется и в пустоте. Таким образом, были опровергнуты старые представления о действии электричества через воздух.

Многочисленные опыты, проведённые в конце XVII – начале XVIII в., показали, что в наэлектризованных предметах иногда возникают силы притяжения, а иногда – отталкивания. Это привело в 1733 г. к открытию, сделанному французским исследователем Шарлем Франсуа Дюфе (1698–1739). Проведя множество остроумных и изящных опытов, он пришёл к выводу о существовании двух видов электричества, которые он назвал «стеклянным» и «смоляным» в честь тех предметов, которые позволили ему сделать это открытие. Многие исследователи попытались объяснить этот удивительный феномен. Известный американский учёный и политический деятель Бенджамин Франклин (1706–1790), открывший электрическую природу молнии и увековеченный на стодолларовой купюре, полагал, что электричество представляет собой некую субстанцию (флюид), которая может присутствовать в заряженных телах либо в избытке, либо в недостатке. В первом случае Франклин называл тело положительно электризованным, а во втором – отрицательно электризованным. Однако вскоре появилась теория, утверждающая, что в каждом теле имеются оба флюида, а в нейтральном, т. е. неэлектризованном, состоянии они присутствуют в равных количествах. В принципе эта теория оказалась справедливой, и впоследствии эти два вида «флюида» были названы положительным и отрицательным электрическими зарядами. Названия эти чисто условные, они не отражают какие-то «положительные» или «отрицательные» качества электричества, это просто оставшееся от Франклина наследие. Как мы теперь знаем, разноимённые заряды притягивают друг друга, а одноимённые отталкивают (рис. 70). Когда положительно заряженное тело соприкасается с отрицательно заряженным, их заряды компенсируют друг друга. В результате тела становятся электрически нейтральными.

1 ... 23 24 25 26 27 28 29 30 31 ... 77
На этой странице вы можете бесплатно читать книгу Естествознание. Базовый уровень. 10 класс - Сергей Титов бесплатно.
Похожие на Естествознание. Базовый уровень. 10 класс - Сергей Титов книги

Оставить комментарий