В большинстве случаев движение нейронов при миграции носит амебоидный характер. Мигрирующая клетка вначале выбрасывает ведущий отросток, который прикрепляется к подходящему субстрату; ядро перетекает или втягивается в отросток, после чего подтягивается задний отросток. В целом это довольно медленный процесс: средняя скорость миграции клетки составляет около одной десятой миллиметра в день. В некоторых случаях клетка как целое не мигрирует. Вместо этого вначале на ранней стадии развития она выпускает несколько отростков, а позднее тело клетки перемещается постепенно все дальше и дальше от первых отростков, которые остаются при миграции тела на прежнем месте.
Ядра нервных клеток мигрируют в слое эпителиальной ткани, образующей стенку нервной трубки развивающегося зародыша. В период, когда в клетках, расположенных в этом слое, называемом нейроэпителием, или вентрикулярной зоной, реплицируется ДНК, их ядра движутся по направлению к внутренней поверхности эпителия, периферические отростки отделяются от наружного слоя, и клетки перед делением округляются. После митоза дочерние клетки либо выпускают новый отросток, по которому их ядра могут мигрировать обратно в средний слой эпителия, либо (если клетки прекращают делиться) удаляются из эпителия, принимая участие в образовании промежуточного слоя стенки мозга.
Поскольку нейроны часто мигрируют на значительные расстояния, интересно знать, на какого типа направляющие сигналы они реагируют. В частности, возникает вопрос, "откуда они знают", в какой момент времени следует сделать остановку и начать агрегацию с другими подобными нейронами. Уже на протяжении некоторого времени известно, что в развивающемся мозге существуют специализированные глиальные клетки, тела которых расположены в вентрикулярной зоне, а отростки вытянуты радиально к поверхности. Поскольку эти клетки появляются на ранних стадиях развития и продолжают существовать еще некоторое время после того, как нейроны прекратят миграцию, предполагается, что они могут служить удобными направляющими, вдоль которых нейроны могут двигаться. На электронных микрофотографиях многих частей развивающегося мозга мигрирующие клетки почти всегда обнаруживаются в тесном контакте с соседствующими отростками глиальных клеток. Этот факт позволил П. Ракичу (P. Rakic) из Медицинской школы Йельского университета постулировать, что мигрирующие клетки направляются к своему постоянному местоположению отростками глиальных клеток. В пользу этой точки зрения говорят наблюдения Ракича и Р. Сидмана (R. Sidman) из детской больницы Медицинского центра в Бостоне, заметивших, что в результате одной из наиболее поразительных генетических мутаций, затрагивающих мозжечок мыши, радиальные отростки глиальных клеток дегенерируют на сравнительно ранней стадии, и миграция большинства клеток-зерен полностью нарушается, видимо, как результат этой дегенерации.
Здесь показано постепенное утолщение стенки развивающегося мозга. На самой ранней стадии (1) стенка содержит только "псевдомногослойный" эпителий, в вентрикулярной зоне (ВЗ) которого находятся тела клеток, а в краевой зоне (КЗ) только вытянутые наружу отростки. Когда некоторые из клеток теряют способность синтезировать ДНК и выходят из митотического цикла (2), они образуют второй слой - промежуточную зону (ПЗ). В переднем мозгу клетки, проходящие через эту зону, агрегируют с образованием корковой пластинки (КП) - области, в которой развиваются различные слои коры головного мозга (3). На самой поздней стадии (4) исходная вентрикулярная зона остается в виде эпендимы - выстилки желудочков мозга, а относительно свободная от клеток область между этой выстилкой и корой становится подкорковым белым веществом, сквозь которое нервные волокна входят в кору и выходят из нее. Субвентрикулярная зона (СЗ) является вторичной зоной размножения, где образуются многие глиальные клетки и некоторые нейроны переднего мозга.
Специализированные опорные клетки - радиальные глиальные клетки возникают на ранних стадиях развития нервной системы. Для этих клеток характерны необычайно длинные отростки, которые целиком "пробуравливают" стенку нервной трубки и производных структур. На рисунке вверху показано, как выглядят радиальные глиальные клетки на окрашенном по Гольджи толстом поперечном срезе препарата полушария головного мозга у плода обезьяны. Тела клеток лежат в вентрикулярной зоне, а их отростки протягиваются до наружной поверхности окружающих слоев, где они, по-видимому, прикрепляются с помощью разветвленного конца. Внизу слева показан увеличенный сегмент этого поперечного среза. Небольшой кусочек ткани в рамке показан внизу справа крупнее в виде объемной картинки, сделанной на основании микроскопического исследования Ракича. Рисунок показывает тесную связь между отростками радиальных глиальных клеток и мигрирующими нейронами; связь эта наблюдается при развитии большинства отделов мозга.
Если учесть расстояние, на которое многие нейроны перемещаются за период развития, то не приходится удивляться тому, что во время своей миграции некоторые клетки отклоняются от правильного пути и оказываются в итоге не на своем месте. Долгое время патологи считали такое смещение положения нейронов (названное эктопией) сопутствующим обстоятельством некоторых серьезных нарушений развития мозга и не принимали во внимание, что даже во время нормального развития часть мигрирующих клеток может неадекватно реагировать на обычный направляющий стимул и оказаться в неверном положении. Современные методы исследования в ряде случаев дали возможность выявить клетки такого рода; при этом оказалось, что большинство подобных смещенных нейронов не удается обнаружить на более поздних стадиях развития. При тщательном изучении с этой точки зрения одной из популяций нейронов оказалось, что неточно мигрирует около 3% клеток, и за редким исключением все смещенные нейроны дегенерируют.
Когда мигрирующие нейроны достигают своего окончательного местоположения, они агрегируют с другими аналогичными клетками, образуя либо корковые слои, либо ядерную массу. Способность развивающихся клеток одинакового происхождения избирательно слипаться с другими аналогичными клетками была впервые обнаружена более 50 лет назад, однако только в последнее десятилетие этот факт привлек заслуженное внимание нейроэмбриологов. Отправным стимулом для современных исследований послужил поиск молекулярных механизмов, лежащих в основе формирования специфических связей между родственными группами нейронов. К сожалению, задача эта оказалась трудно поддающейся решению, хотя большая часть проделанной при этом работы непосредственно подводит к важным выводам в отношении того, как образуются в развивающемся мозге дискретные популяции нейронов.
Возможно, наиболее важным в этой серии исследований явилось следующее наблюдение: если клетки из двух или трех областей развивающейся нервной системы диспергировать (механически или же с помощью мягкой химической обработки), смешать вместе, а затем оставить реагрегировать в подходящей среде, то они проявляют тенденцию сортироваться таким образом, что клетки каждой данной области агрегируют преимущественно с клетками той же области. Избирательная адгезивность, по-видимому, является общим свойством всех живых клеток и обеспечивается наличием на их поверхности особого класса больших молекул, которые служат как для "узнавания" клеток того же сорта, так и для связывания клеток друг с другом. Эти молекулы, функционирующие как межклеточные связки (лиганды), высоко специфичны для каждого крупного типа клеток. В процессе развития они, вероятно, изменяются либо в количественном отношении, либо по характеру распределения. В последнее время сотрудники нескольких лабораторий предпринимают попытки выделить и охарактеризовать те или иные поверхностные лиганды, и, быть может, проблема эта окажется первой среди других проблем биологии развития нервной системы, которые будут успешно решены на молекулярном уровне.
Еще одна особенность агрегации клеток в развивающейся нервной системе состоит в том, что в большинстве областей мозга клетки не только агрегируют друг с другом, но и приобретают некоторую предпочтительную ориентацию. К примеру, в коре головного мозга большинство крупных пирамидных нейронов согласованно выстраиваются в ряд таким образом, что их выступающие апикальные дендриты оказываются направленными к поверхности, а их аксоны располагаются в направлении подлежащего белого вещества. Непонятно, что помогает клеткам выстраиваться в ряд, однако представляется вероятным, что этому способствует либо наличие на поверхности клетки молекул разных классов, задающих ориентацию, либо избирательное перераспределение поверхностных молекул, определяющее исходную клеточную агрегацию.