Рейтинговые книги
Читем онлайн Посвящение в радиоэлектронику - Владимир Поляков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 92

Следующим, а в крупных городах первым по значению источником помех радиоприему является деятельность человека. Проведите небольшой опыт. Включите приемник, найдите свободную от сигналов радиостанций частоту в диапазонах ДВ или СВ и увеличьте громкость до предела. Что вы слышите? Если не сплошной треск, то уж нерегулярные потрескивания и щелчки обязательно. А теперь включите настольную лампу или любой другой электроприбор.

Слышали щелчок в момент включения? Представьте, сколько электрических установок, выключателей и искрящих контактов в большом городе окружает нас! Ведь каждая искра в выключателе, микроскопическая дуга между щеткой и коллектором электродвигателя, служат возбудителями радиочастотных колебаний, точно так же, как и в первом искровом передатчике Герца. А электрические провода служат прекрасными антеннами. Нельзя сказать, что против индустриальных помех не применяется никаких мер борьбы. Правильно сконструированные электрические сети обязательно оснащаются устройствами для подавления помех. Любой искрящий контакт должен оснащаться искрогасящим устройством и противопомеховым фильтром. В простейшем случае им может быть обычный конденсатор, шунтирующий контакт. Повышается и помехоустойчивость радиоприемных устройств. Редкие щелчки хорошо подавляются ограничителями импульсных помех. Борьба с непрерывными «гладкими» помехами значительно сложнее, но и здесь поможет правильное проектирование входных цепей приемника и использование специальных помехоустойчивых антенн.

Но все это-будни радиоприема и радиосвязи, а как же с праздниками? Как обстоит дело с приемом радиосигналов от внеземных цивилизаций? Собственно говоря, в процессе развития радиотехники их принимали неоднократно. Правда, потом оказывалось, что это нечто совсем иное… Слишком велико желание, очень уж велика тяга у людей к таинственному и необыкновенному. Лишь только появились первые радиоприемники стали ждать сигналов с Марса. Тем более, что в те годы Марс располагался на орбите близко к Земле. В телескопы внимательно изучали марсианские каналы. А. Толстой написал знаменитую «Аэлиту». Радиосигналов от разумных существ, правда, не дождались. Но эфир слушали, продолжая заниматься обычной рутинной инженерной и исследовательской работой. И космические сигналы были приняты! Это случилось совершенно неожиданно.

Американский радиоинженер-исследователь К. Янский в декабре 1931 гола был далек от мысли о внеземных источниках излучения. Он измерял и анализировал уровень шума в эфире на коротких волнах. Ясно прослеживался суточный ход уровня помех, связанный с изменениями условий прохождения радиоволн. Занимаясь исследованиями достаточно долго, Янский обнаружил, что максимум помех на самых коротких волнах, длиной около 15 м, наступает в каждый последующий день на четыре минуты раньше, чем в предыдущий. А это значит, что периодичность изменений соответствует не солнечным, обычным суткам, а звездным, продолжительность которых составляет 23 ч. 50 мин. Ведь Земля, вращаясь вокруг Солнца, за год делает еще один, дополнительный оборот вокруг своей оси. Отсюда следовало, что источник шумов лежит вне Солнечной системы!

Последующие наблюдения с помощью направленных антенн показали, что максимум интенсивности принимаемых шумов соответствует направлению на центр нашей Галактики и как бы «размыт» вдоль Млечного Пути. Открытие Янского положило начало новой науке — радиоастрономии, занимающей теперь одно из ведущих мест в изучении Вселенной. Вторая мировая война надолго прервала радиоастрономические исследования. Но после ее окончания в руках ученых оказалась новая техника техника дециметровых и сантиметровых волн, позволившая построить антенны высокой направленности и чувствительные радиоприемники. С их помощью были открыты радиозвезды — точечные и необычайно мощные источники радиоизлучения. Долго не удавалось отождествить радиозвезды с какими-либо видимыми астрономическими объектами.

Первым отождествили мощный радиоисточник в созвездии Тельца. Его положение совпало с положением наблюдаемой в оптическом диапазоне Крабовидной туманности. Эта туманность является остатком сверхновой звезды, ярко вспыхнувшей в 1054 году. Сведения об этой вспышке найдены в древних китайских летописях. Как указывают летописцы, звезду было видно даже днем, настолько она была яркой. Теперь эта газовая туманность расширяется со скоростью 115 млн. км в сутки. А находится она от нас на расстоянии 4100 световых лет!

Радиоастрономия за немногие годы своего существования сделала поразительные открытия. Оказалось, что многие мощные источники радиоизлучения лежат не в нашей Галактике, а далеко за ее пределами. Эти источники так и назвали — радиогалактики. Одна из радиогалактик, например, представляет собой не одну, а две галактики, столкнувшиеся и как бы пронизавшие одна другую. Плотность звезд в галактиках очень мала, поэтому для звезд никаких особо вредных последствий от столкновения галактик нет. Но столкновения хотя и очень разреженных облаков межзвездного газа как раз и вызывают сильное радиоизлучение.

В очередной раз умы исследователей были взбудоражены в 60-х годах, когда на одном из английских радиотелескопов зарегистрировали правильно повторяющийся радиосигнал с периодичностью в несколько секунд. Эта запись совсем уже напоминала телеграфный сигнал, и первой мыслью была мысль о внеземной цивилизации. Но периодичность сигнала оставалась строго постоянной, а как мы теперь знаем, правильный периодический сигнал никакой информации не несет. Источник сигнала назвали пульсаром. Были открыты и другие подобные источники. Пульсары удалены от нас на миллиарды световых лет — сейчас радиотелескопы «видят» гораздо дальше, чем самые совершенные оптические телескопы. Пульсары являются как бы «хронометрами» Вселенной, и сейчас идет речь о том, чтобы использовать их излучение как эталон точного времени.

В заключение главы о радиоволнах хотелось бы сказать еще несколько слов о грядущей космической электромагнитной астрономии. Атмосфера Земли имеет два главных «окна прозрачности». Одно лежит в диапазоне световых волн с длинами 0,4…0,7 мкм. И благодаря ему мы наслаждаемся теплом солнечных лучей днем, светом Луны и звезд ночью, благодаря ему возможна самая древняя наука — оптическая астрономия. Другое окно прозрачности атмосферы — радиоокно. С одной стороны его ограничивает критическая частота ионосферы, соответствующая длинам волн 20…50 м, а с другой — частоты поглощения молекул водяного пара и атмосферных газов, соответствующие миллиметровым волнам. Как видим, радиоокно в тысячи раз «шире» оптического. Оно позволило появиться одной из самых молодых наук — радиоастрономии. Но ведь космос интересно исследовать и в других диапазонах волн инфракрасном, субмиллиметровом, рентгеновском. Такие исследования становятся возможными с созданием в космосе астрономических обсерваторий. Уже выведен на околоземную орбиту спутник с рентгеновским телескопом, широко используется в космических исследованиях инфракрасная техника. Особо следует подчеркнуть, что появление новых научных и технических направлений очень тесно связано с успехами радиоэлектроники — ведь все приемники изучения, системы регистрации, наведения и управления построены на основе электронной техники.

Ну а теперь, имея минимальные сведения о распространении радиоволн в условиях Земли, имеет смысл рассказать о конкретных радиоэлектронных устройствах, и прежде всего о том, из чего они сделаны.

5. «КИРПИЧИКИ» РАДИОЭЛЕКТРОНИКИ

Поговорим о строительстве соборов и вычислительных машин, о «дырках» в веществе, выпрямлении гвоздей и переменного тока, о транзисторах и интегральных схемах, объединяющих тысячи транзисторов, о том, как сделать усилитель и счетчик импульсов, и о многом другом, что лежит в основе радиоэлектроники.

Об одном разговоре во французском городе Шартре

Давным-давно во французском городе Шартре, когда однажды строителей спросили, что они делают, один ответил: «Ношу кирпичи». Другой сказал: «Готовлю раствор». Третий, не отрываясь от работы, буркнул: «Наращиваю леса». И лишь один, выпрямившись и гордо оглядев уже сделанное, произнес: «Я строю Шартрский собор!»

Я строю…

Как часто за мелочами не видно главного! В современной высокоразвитой электронной промышленности заняты десятки тысяч человек. Одни выращивают высокочистые полупроводниковые кристаллы, другие изготавливают на высокоточном оборудовании интегральные микросхемы, третьи разрабатывают их топологию, четвертые заняты программным обеспечением ЭВМ, есть масса занятий для пятых, шестых и т. д… Но все они вместе возводят одно величественное здание современной электроники — техники, без которой уже не может обойтись ни одна отрасль народного хозяйства.

1 ... 25 26 27 28 29 30 31 32 33 ... 92
На этой странице вы можете бесплатно читать книгу Посвящение в радиоэлектронику - Владимир Поляков бесплатно.
Похожие на Посвящение в радиоэлектронику - Владимир Поляков книги

Оставить комментарий