Гравитационное взаимодействие (притяжение, тяготение). Самое слабое из четырех фундаментальных взаимодействий, существующих в природе. Гравитационное взаимодействие в приближенном виде описывается теорией тяготения Ньютона; более точно его описывает теория гравитации Эйнштейна — общая теория относительности. Общая теория относительности «не работает» в случае сингулярности в сердце черной дыры и в случае сингулярности при рождении Вселенной. В наше время физики ищут более точное описание гравитации. Теория, уже получившая название «квантовой гравитации», пытается объяснить гравитацию через обмен частиц, именуемых «гравитонами».
Дейтерий. Редкий изотоп водорода. В ядре дейтерия кроме одного протона содержится еще один нейтрон.
Декогерентность. Механизм, который разрушает странную, «потустороннюю» квантовую природу объекта, и, таким образом, этот объект начинает казаться локализованным, а не находящимся во многих местах одновременно. Декогеренция происходит, если внешний мир получает «знание» об объекте. Это знание может быть принесено отдельным фотоном видимого света или молекулой воздуха, отскочившей от объекта. Поскольку большие объекты, например обеденный стол, постоянно подвергаются бомбардировке фотонами или молекулами воздуха и не могут оставаться полностью изолированными от окружающей среды хоть сколько-нибудь долго, они теряют свою способность быть во многих местах одновременно за фантастически короткий период времени — слишком короткий, чтобы мы это каким-либо образом заметили.
Длина волны. Расстояние, которое проходит волна за полный период колебания (то есть расстояние между двумя соседними гребнями волны).
Закон Бойля-Мариотта. Формулируется он так: «При постоянной температуре и массе идеального газа произведение его давления и объема постоянно». На практике все несколько проще: если уполовинить объем газа, его давление удвоится.
Закон всеобщего тяготения Ньютона. Представление о том, что все тела действуют друг на друга с силой, которая зависит от произведения их индивидуальных масс и обратного квадрата расстояний между ними. Другими словами, если расстояние между телами увеличивается вдвое, сила становится в четыре раза слабее; если расстояние утраивается, сила ослабевает в девять раз; и так далее. Закон всеобщего тяготения Ньютона прекрасно подходит для повседневной жизни, но все же он приблизителен. Эйнштейн «улучшил» этот закон, предложив общую теорию относительности.
Законы сохранения. Фундаментальные физические законы, согласно которым при определенных условиях некоторые измеримые физические величины не изменяются с течением времени. Например, закон сохранения энергии указывает на то, что энергия не может быть создана или уничтожена, а может только преобразовываться из одной формы в другую. Так, химическая энергия бензина может преобразоваться в энергию движения автомобиля.
Закон сохранения импульса. Принцип, согласно которому импульс замкнутой системы не может быть создан или уничтожен.
Запутанность. Квантовая взаимозависимость двух или более микроскопических частиц, отчего они теряют свою индивидуальность и во многих отношениях ведут себя как единая сущность.
Звезда. Гигантский газовый шар, который пополняет свою тепловую энергию, отдаваемую окружающему пространству, за счет ядерной энергии, вырабатываемой в его сердцевине.
Изотоп. Разновидность атома химического элемента. Изотопы одного элемента отличаются друг от друга только массами, а именно количеством нейтронов в ядре. Например, хлор имеет два стабильных изотопа с массами 35 и 37. Различие в массах отражает разные числа нейтронов в ядрах: хлор-35 содержит 18 нейтронов, а хлор-37–20. (Однако оба изотопа содержат одно и то же количество протонов — 17, поскольку именно количество протонов определяет «индивидуальность» элемента.)
Импульс. Импульс тела — это показатель того, какое усилие надо приложить к движущемуся телу, чтобы остановить его. Например, нефтяной танкер, даже если он движется со скоростью всего несколько узлов, гораздо труднее остановить, чем гоночную машину на чемпионате «Формула-1», несущуюся со скоростью 200 километров в час. А все из-за того, что у нефтяного танкера импульс больше.
Интерференция. Способность двух волн, проходящих друг через друга, усиливаться там, где совпадают их максимумы, и сходить на нет там, где максимум одной волны совпадает с минимумом другой.
Интерференционный рисунок. Рисунок из светлых и темных полос, который появляется на экране, освещенном светом из двух источников. Этот рисунок возникает по той причине, что световые волны из двух источников в одних местах экрана усиливают друг друга, а в других — сходят на нет.
Ион. Атом или молекула, которая лишилась одного или более из своих электронов и таким образом обрела положительный результирующий электрический заряд.
Квант. Мельчайшая порция, до которой что-либо можно разделить. К примеру, фотоны — это кванты электромагнитного поля.
Квантовая вероятность. Вероятность события в микромире. Хотя природа препятствует тому, чтобы мы с большой точностью знали какие-то вещи, она тем не менее позволяет нам с большой точностью знать вероятность этих вещей.
Квантовая непредсказуемость. Непредсказуемость микроскопических частиц. Их поведение непредсказуемо даже в принципе. Сравним это с непредсказуемостью при подбрасывании монеты. Результат непредсказуем только на практике. Но теоретически, если нам известны форма монеты, силы, на нее действующие, окружающие воздушные потоки и прочее, мы вполне можем предсказать результат.
Квантовая неразличимость. Невозможность различить два квантовых события. Они могут быть неразличимы, например, потому, что в них участвуют две одинаковые частицы, или потому, что события не поддаются наблюдению. Однако важно то, что вероятностные волны, ассоциированные с неразличимыми событиями, интерферируют. Это влечет за собой всякого рода квантовые феномены.
Квантовое число. Число, характеризующее те свойства микроскопического объекта, которые «делятся на порции» (или квантуются), — к ним относятся, например, спин и орбитальная энергия электрона.
Квантовая суперпозиция. Ситуация, при которой квантовый объект, такой, как атом, в конкретный момент пребывает более чем в одном состоянии. Он может быть, к примеру, в нескольких местах одновременно. Между отдельными состояниями в суперпозиции существует взаимодействие, или «интерференция», — в сущности, на ней и строится вся диковинность, «потусторонность» квантового мира. Декогерентность препятствует этому взаимодействию и, таким образом, мешает проявлению квантового поведения частиц.
Квантовая теория. В сущности, это теория о микроскопическом мире атомов и их составляющих. Те, кому нравится «многомировая интерпретация», верят, что квантовая теория также описывает и большой мир.
Квантовая электродинамика. Теория о взаимодействии света с материей. Она объясняет практически все в окружающем мире: почему земля под нашими ногами твердая, принцип работы лазера, химия обмена веществ, работа компьютеров — все это квантовая электродинамика.
Квантовое туннелирование. Явно волшебная способность микроскопических частиц выбираться из своего заключения. Например, альфа-частица может туннелировать сквозь барьер, удерживающий ее в атомном ядре, — это все равно, как если бы прыгун в высоту перемахнул через четырехметровую стену. Туннелирование — это еще одно следствие волнового характера микроскопических частиц.
Классическая физика. Неквантовая физика. В сущности, вся физика до 1900 года, когда немецкий физик Макс Планк первым предположил, что энергия может передаваться отдельными порциями — «квантами». А Эйнштейн первым понял, что эта идея абсолютно не совместима со всей той физикой, что была раньше.
Корпускулярно-волновой дуализм. Способность субатомной частицы вести себя и как локализованная в пространстве частица, подобная биллиардному шару, и как распределенная в пространстве волна.
Космологический горизонт. Вселенная имеет горизонт, очень похожий на тот, что окружает корабль в море. Причина существования горизонта Вселенной в том, что свет имеет предельную скорость, а Вселенная существует ограниченный период времени. Это значит, что мы видим только те объекты, свету которых хватило времени, чтобы долететь до нас с момента Большого взрыва. Наблюдаемая вселенная похожа на пузырь с Землей в центре: поверхность пузыря и есть тот самый космологический горизонт. С каждым днем Вселенная становится старше (на один день), поэтому каждый день горизонт расширяется, и становятся видимы новые объекты — точь-в-точь как корабли, появляющиеся на горизонте в море.