Но здесь была вот какая загвоздка: концентрация кислорода в воздухе и воде в далекой древности была очень низкой. За многие миллиарды лет она и близко не подходила к тем значениям, которые мы наблюдаем сегодня. Затем, где-то около миллиарда лет назад, концентрация кислорода стала резко повышаться и через некоторое время достигла значений, сравнимых с современными. После этого она уже никогда сильно не снижалась. Откуда нам это известно? Из химических особенностей горных пород. Породы возрастом около миллиарда лет несут в себе явные следы того, что они формировались в условиях повышающейся концентрации кислорода. Может быть, появление многоклеточности было связано как раз с повышением уровня кислорода в атмосфере?
Возможно, для появления тел потребовалось что-то вроде "идеального шторма" — случайного стечения погодных условий, которые по отдельности ничего бы не сделали, а вместе вызывают сильный шторм. В течение миллиардов лет микробы вырабатывали новые способы взаимодействия с окружающей средой и друг с другом. В процессе этого им удалось найти ряд молекулярных составляющих и других инструментов, которые впоследствии помогли в строительстве тел, но тогда использовались для других целей. Кроме того, около миллиарда лет назад появилась и причина для возникновения многоклеточности: микробы научились пожирать друг друга. Итак, для появления многоклеточных тел теперь была причина, а инструменты для этого уже имелись в наличии.
Но еще одного условия не хватало. Этим условием было достаточное для поддержания жизни многоклеточного организма количество кислорода. Когда концентрация кислорода в атмосфере стала достаточно высокой, многоклеточные тела появились повсюду. Облик жизни на Земле изменился раз и навсегда.
Глава 8. Курс на запах.
Вначале восьмидесятых отношения между молекулярными биологами и теми, кто занимался целыми организмами — экологами, анатомами, палеонтологами, — были довольно напряженными. Анатомов, например, молекулярщики считали старомодными приверженцами безнадежно устаревшей научной дисциплины. Молекулярная биология производила в подходах к анатомии и биологии развития такую революцию, что классические области, такие как палеонтология, казались тупиковыми ветвями исторического развития биологии. Я очень остро ощущал все это: казалось, что меня с моей любовью к ископаемым скоро заменят каким-нибудь новейшим аппаратом, читающим последовательности нуклеотидов в ДНК.
Прошло двадцать лет, и я по-прежнему копаюсь в грязи и раскалываю камни. Кроме того, я собираю образцы ДНК и изучаю ее роль в развитии организмов. Так обычно и бывает в научных спорах — поначалу люди всегда склонны перегибать палку. Со временем подход "все или ничего" уступает место более взвешенным и реалистичным подходам. Ископаемые и геологическая летопись остаются богатым источником данных о нашем прошлом. Без них никак нельзя узнать, какими были условия среды и какие именно переходные формы возникали на протяжении развития жизни. Изучение ДНК в свою очередь, как мы уже убедились, открывает широкое поле для изучения истории жизни и механизмов формирования тел и органов. Роль ДНК особенно велика в тех вопросах, о которых палеонтологические данные ничего не говорят. Многие структуры живых организмов, например мягкие ткани, сохраняются в ископаемом виде лишь в редчайших случаях. Об истории многих таких структур у нас имеются сведения, добытые почти исключительно из ДНК.
Извлекать ДНК из живых организмов удивительно просто — так просто, что вы можете делать это у себя на кухне. Возьмите немного ткани какого-либо растения или животного — горох, или кусок мяса, или куриную печенку. Добавьте немного соли и воды и поместите все это в кухонный комбайн, чтобы размолоть в однородную массу. Затем добавьте немного средства для мытья посуды. Оно растворит окружающие клетки мембраны, оказавшиеся слишком маленькими, чтобы их размолол кухонный комбайн. После этого добавьте немного размягчителя для мяса. Он удалит некоторые белки, прикрепленные к молекулам ДНК. Теперь у вас получилось жидковатое мыльное пюре, в котором плавает ДНК. Добавьте к нему немного технического изопропилового спирта. У вас получится двухслойный коктейль: внизу мыльное пюре, вверху прозрачный спирт. ДНК охотно смешивается со спиртом, поэтому она выйдет из пюре в спирт. Если вы увидите, что в спирте появился округлый белый сгусток, значит, вы все сделали правильно. Этот сгусток и есть ДНК.
Теперь с помощью этого белого вещества можно разобраться во многих фундаментальных связях между нами и остальными живыми существами. Чтобы сделать это, нужно сравнивать строение и функции ДНК разных видов, и на это занятие у нас уходит немало часов и долларов. В этом деле очень помогает одно на первый взгляд неожиданное обстоятельство. Извлекая ДНК из любой ткани того или иного вида, к примеру из печени, можно добыть сведения об истории не только этой ткани и части тела, но и любой другой, например органов обоняния. В ДНК, содержащейся в любой клетке, будь это клетка печени, крови или мышечной ткани, содержится рецепт формирования того устройства, которым мы пользуемся для восприятия запахов окружающей среды. Во всех наших клетках заключен один и тот же набор ДНК. Разница между клетками, напомню, состоит в том, что в них работают разные участки ДНК (то есть гены). Гены, ответственные за наше обоняние, имеются во всех наших клетках, хотя работают они только в клетках носовой полости.
Как нам всем хорошо известно, запахи вызывают нервные импульсы, поступающие в мозг и во многом определяющие наше восприятие окружающего мира. Даже слабый запах может живо напомнить тот класс, в котором мы сидели в детстве, или уютный старый чердак в доме дедушки и бабушки и вновь оживить те чувства, которые мы там когда-то испытывали. Кроме того, и это еще важнее, запахи помогают нам выжить. Запах вкусной еды возбуждает в нас чувство голода, а запах канализации вызывает тошноту. У нас есть встроенная схема поведения, заставляющая нас избегать тухлых яиц. Если вам нужно продать дом, намного лучше, если покупатели, которые придут его осмотреть, почувствуют запах выпекаемого в духовке хлеба, чем варящейся на плите капусты. Люди вкладывают в запахи огромные деньги: в 2005 году в одних Соединенных Штатах парфюмерная промышленность получила 24 миллиарда долларов прибыли. Вот свидетельство того, как тесно мы связаны с нашим обонянием.
Обоняние позволяет нам различать от пяти до десяти тысяч разных запахов. Некоторые люди могут почувствовать вещество, придающее характерный запах острому перцу, в концентрации менее одной части на триллион частей воздуха. Это все равно что заметить единственную песчинку на песчаном пляже в полтора километра длиной. Как нам это удается?
То, что мы воспринимаем как запах, есть ответ нашего мозга на плавающий в воздухе коктейль из разных веществ. Молекулы этих веществ, которые мы ощущаем с помощью органов обоняния, обычно небольшие и достаточно легкие, чтобы оставаться взвешенными в воздухе. Когда мы дышим или принюхиваемся, мы втягиваем эти молекулы в ноздри. Через ноздри они поступают в полость, расположенную в глубине носа, и прилипают к слизи, выстилающей эту полость. Под этой выстилкой из слизи лежит участок ткани, содержащей миллионы нервных клеток, каждая из которых наделена тонким выростом, достигающим слизистого покрова. Когда выпавшие из воздуха молекулы доходят до окончаний этих выростов и связываются с их мембранами, клетки посылают в наш мозг сигналы. Эти сигналы мозг и воспринимает как запах.
На молекулярном уровне наше обоняние работает по принципу ключа и замка. Ключом служит молекула воспринимаемого вещества, замком — рецептор на мембране нервной клетки. Молекула, пойманная выстилающей носовую полость слизью, взаимодействует с рецептором на поверхности мембраны нервной клетки. Клетка посылает в мозг сигнал, только когда молекула связывается с рецептором. Каждому рецептору соответствуют молекулы определенного типа. То, что мы воспринимаем как один запах, часто вызывается набором из молекул многих разных веществ и, соответственно, набором из многих сигналов, поступающих в мозг.
Чтобы пояснить это, как нельзя лучше подойдет аналогия из области музыки: многие запахи — это что-то вроде аккорда. Каждый аккорд состоит из нескольких нот, звучащих и воспринимаемых вместе.
Молекулы пахучих веществ (увеличены во много-много раз) выходят из цветка и парят в воздухе. Попадая в носовую полость человека, эти молекулы соединяются с рецепторами, расположенными в глубине выстилающей эту полость слизи. Когда молекула присоединяется к рецептору, от него в мозг поступает сигнал. То, что мы воспринимаем как один запах, нередко состоит из набора сигналов от многих рецепторов, с которыми связываются разные молекулы. Наш мозг объединяет этот набор сигналов в один определенный запах.