Рассказ о возникновении жизни, который я сейчас вам предложу, по необходимости будет предположительным; по определению, в то время не было никого, кто мог бы увидеть, как все происходило на самом деле. Существует несколько конкурирующих теорий, но все они имеют нечто общее. Упрощенное описание, которое я дам, возможно, не так уж далеко от истины.
Мы не знаем, какое химическое сырье было на земле в изобилии до начала жизни, но среди возможных кандидатов можно назвать воду, двуокись углерода, метан и аммиак — все эти простые элементы присутствуют хотя бы на некоторых планетах нашей солнечной системы. Химики пытались сымитировать химические условия на молодой Земле. Они собрали эти простые элементы в пробирке и обеспечили энергию в виде ультрафиолетового света или электрической искры — имитации первичных молний. После нескольких недель эксперимента в пробирке обычно находят что-нибудь интересное: жидкий коричневый супчик, в котором плавают молекулы сложнее тех, что были там первоначально. В частности, там были найдены аминокислоты — строительные блоки белков, одного из двух основных классов биологических молекул. До этих экспериментов считалось, что естественно возникающие аминокислоты являются индикатором присутствия жизни. Если бы их нашли, скажем, на Марсе, то были бы почти уверены в том, что там есть жизнь. Однако теперь их присутствие означает лишь наличие некоторых простых газов в атмосфере, вулканов, солнечного света или грозовой погоды. В последнее время лабораторные симуляции химических условий на земле до возникновения жизни произвели органические субстанции под названием пурины и пиримидины. Эти субстанции — строительные кирпичики генетической молекулы, самой ДНК.
Вероятно, в результате аналогичных процессов и образовался первоначальный “бульон”, из которого, по мнению биологов и химиков, состояли моря от трех до четырех миллиардов лет назад. Органические вещества концентрировались в некоторых местах, возможно, в высыхающей на берегу пене или в маленьких обособленных каплях. Под дальнейшим воздействием энергии — например, ультрафиолетового излучения солнца — они образовывали более крупные молекулы. Сейчас большие органические молекулы не просуществовали бы достаточно долго, чтобы быть замеченными — их сразу бы поглотили и расщепили бактерии или другие живые организмы. Но бактерии и все остальные организмы появились позже, а в те дни крупные органические молекулы могли спокойно плавать в загустевающем “супе”.
В какой-то момент там случайно возникла особенно интересная молекула. Мы назовем ее репликатором. Это вовсе не была самая большая или самая сложная из существовавших тогда молекул, зато она обладала уникальным свойством: она могла создавать собственные копии. Может показаться, что подобная случайность слишком неправдоподобна. Так оно и есть. Это было чрезвычайно маловероятно. В период времени, равный человеческой жизни, настолько маловероятные события можно считать практически невозможными. Именно поэтому вам никогда не удастся выиграть главный приз в лотерею. Но в наших человеческих оценках того, что вероятно и что нет, мы не привыкли брать в расчет периоды в сотни миллионов лет. Если бы вы покупали лотерейный билет каждую неделю в течение ста миллионов лет, вы, скорее всего, выиграли бы несколько главных призов.
На самом деле, молекулу, способную самовоспроизводиться, вовсе не так уж трудно вообразить; кроме того, она должна была образоваться всего один раз. Представьте себе, что репликатор — это нечто вроде матрицы, шаблона. Представьте, что это большая молекула, состоящая из сложной цепи молекул, представляющих из себя различные строительные блоки. В бульоне, где плавает репликатор, полным-полно маленьких строительных блоков. Предположим, что каждый из строительных блоков тяготеет к блокам своего типа. Каждый раз, когда строительный блок из бульона попадает на репликатор вблизи от своего “родственника” скорее всего, он там и остается. Прилипающие таким образом блоки автоматически будут расположены в том же порядке, как и блоки самого репликатора. Этот процесс может продолжаться в виде нарастания, слой за слоем, новых блоков. Именно так формируются кристаллы. С другой стороны, две цепочки могут разделиться, и мы получим два репликатора, каждый из которых может продолжать производить собственные копии.
Еще более сложная возможность состоит в том, что каждый блок тяготеет не к собственному типу, а к какому-то иному типу блоков, а те отвечают “взаимностью”. В этом случае репликатор будет служить матрицей не для идентичной копии, а для собственного “негатива”, который, в свою очередь, произведет точную копию первоначального позитива. Для нас неважно, был ли первоначальный процесс репликации позитивно-позитивным или позитивно-негативным, хотя стоит заметить, что современные аналоги первого репликатора, молекулы ДНК, используют позитивно-негативную репликацию. Важно здесь то, что в мире внезапно появился новый тип “стабильности”. До этого в бульоне, скорее всего, не преобладал ни один из типов сложных молекул, поскольку каждый из них зависел от строительных блоков, случайно сложившихся в нужную устойчивую конфигурацию. Как только появился репликатор, он быстро наводнил своими копиями все моря. В результате меньшие строительные блоки стали редкостью и другие большие молекулы стали формироваться все реже и реже.
Итак, мы получили большое количество идентичных копий. Но теперь пора вспомнить о важном свойстве процесса самовоспроизводства: он не совершенен. В нем случаются ошибки. Я надеюсь, что в этой книге нет опечаток; однако, если вы как следует поищете, вы можете обнаружить одну или две. Скорее всего, они не сильно изменят значение предложения, поскольку будут ошибками “первого поколения”. Но вообразите, что происходило до изобретения книгопечатания, когда такие книги, как Евангелия, переписывались от руки. Какими бы аккуратными они ни были, все писцы обязательно делали по несколько ошибок, а некоторые из них не останавливались и перед небольшим сознательным “улучшением”. Если бы все они списывали с одного основного списка, значение не было бы серьезно искажено. Но если списки делались с других списков, а те, в свою очередь, с более ранних манускриптов, ошибки начинали накапливаться и становиться все более серьезными. Мы считаем, что неверное копирование — это плохо, и в случае с человеческими документами трудно придумать пример, в котором ошибка улучшала бы текст. Думаю, что ученые седьмого века по крайней мере положили начало чему-то великому, когда ошибочно перевели “молодая женщина” греческим термином, обозначавшим “девственница”. Результатом явился текст пророчества: “Девственница понесет и родит сына…” Так или иначе, мы увидим, что ошибочное копирование в биологическом самовоспроизводстве может привести к реальному улучшению; более того, для прогрессивной эволюции некоторое количество ошибок было просто необходимо. Мы не знаем, насколько аккуратными были копии первых репликаторов. Их современные потомки, молекулы ДНК, удивительно аккуратны по сравнению с самым лучшим из человеческих процессов воспроизводства, но даже они иногда допускают ошибки, и именно эти ошибки делают эволюцию возможной. Скорее всего, первоначальные репликаторы ошибались гораздо чаще, но в любом случае мы можем быть уверены в том, что ошибки были и что эти ошибки обладали свойством накапливаться.
По мере того, как ошибки совершались и распространялись, первичный бульон наполнялся вариантами реплицирующихся молекул вместо их идентичных копий. Все они произошли от одного и того же “предка”. Были ли некоторые варианты более многочисленными, чем другие? Почти наверняка. Некоторые варианты были изначально устойчивее других. Определенные молекулы, однажды сформировавшись, распадались реже других. Эти типы должны были стать более многочисленными в бульоне, не только в результате прямого логического следствия их “долгожительства”, но также потому, что у них было больше времени на самовоспроизводство. Таким образом, долгоживущие репликаторы начинали преобладать в числе и, при прочих равных, составили бы “эволюционную тенденцию” к более долгому существованию в популяции молекул.
Однако остальные факторы были, скорее всего, не одинаковыми, и другой особенностью варианта репликатора, особенностью, которая должна была быть еще важнее в распространении его в популяции, была скорость репликации, или “плодовитость”. Если молекулы репликатора типа А воспроизводились со скоростью одна в неделю, а молекулы репликатора типа Б — со скоростью одна в час, то нетрудно увидеть, что вскоре молекулы типа Б стали бы преобладать над молекулами типа А, даже если те и жили бы намного дольше.
Таким образом, в супе по-видимому присутствовала “эволюционная тенденция” к большей “плодовитости” молекул. Третья характеристика молекул репликатора, которая была бы выбрана, это аккуратность воспроизводства. Если молекулы типа Х и типа У живут одно и то же время и воспроизводятся с одинаковой скоростью, но при этом Х ошибается в каждой десятой копии, в то время как У — только в каждой сотой, очевидно, что У будет более многочисленной. Х в популяции теряет не только своих ошибочных “детей” но и всех их потомков, как действительных, так и возможных.