Рейтинговые книги
Читем онлайн Беседы о жизни - Галактионов Станислав Геннадиевич

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 45

Итак, прежде всего о структуре комплементарных парных комплексов молекул ДНК, о которых шла речь в начале книги. Комплементарные пары оснований, напоминаем, образуют аденин с цитозином и гуанин с тимином. Аденин и гуанин относятся к числу так называемых пуриновых оснований; эти основания представляют собой два сочлененных цикла — шестичленный и пятичленный, образующих одну плоскость. Два других основания, цитозин и тимин — пиримидиновые, содержат только шестичленный цикл. Таким образом, схема соединения оснований такова, что большое основание образует комплементарную пару с малым, но никогда — большое с большим или малое с малым. На вопрос же о том, почему большой гуанин объединяется именно с малым цитозином, но не с малым тимином, также ответить сравнительно легко. При сближении определенным образом ориентированных ароматических колец гуанина и цитозина между ними возникают три водородные связи, причем группы, участвующие в их образовании, хорошо соответствуют друг другу. При сближении аденина и тимина также появляются водородные связи, но только две. А вот между аденином и цитозином водородные связи либо не образуются вовсе, либо, если и возникают, то очень слабые.

С учетом этих подробностей становится ясной природа сил, удерживающих комплементарные нити ДНК вместе: пара комплементарных оснований образует общую плоскость из двух колец, стянутых водородными связями. При этом такие вот плоские элементы, складываясь друг с другом, образуют как бы стопку правильной формы. Эта стопка удерживается невалентными силами, а вдоль нее, закручиваясь в форме спирали, тянутся две нити регулярной, повторяющейся части молекулы — сахаро-фосфатный остов. Поэтому такая структура и называется двойной спиралью ДНК.

Впрочем, кто же в наши-то дни этого не знает! Знаменитая двойная спираль. В некотором роде символический знак новой биологии. На фасаде главного корпуса Академии наук БССР, возведенном несколько десятилетий назад, есть барельефы с изображением символов науки, имевших хождение в те годы, — глобуса, реторты и электрофорной машины. Так вот, если в ближайшее время президиум академии решит заменить их чем-то более созвучным эпохе, то, по нашему мнению, скорее всего это будут спутник, стилизованный атом лития (три электрона), и, конечно, двойная спираль — символ чего-то биологического.

Здесь надо отметить, что очень широко распространено даже среди части биологов совершенно ошибочное представление, будто образовывать спиральные структуры могут только биологические полимеры и что именно в этом заключен сам таинственный смысл их «биологичности». Однако спираль — наиболее естественное состояние почти всякого полимера при невысоких температурах; в кристаллической форме до 90 процентов полимерных молекул свернуты в спираль, в растворах также могут спирализовываться значительные участки зауряднейших, хорошо знакомых нам из повседневного быта полимеров — полиэтилена, полихлорвинила, нейлона и т. д. Так что способность молекул белков и ДНК к образованию спиральной структуры не является каким-то загадочным свойством, выделяющим их в ряду прочих полимеров. Но существование именно такой пространственной структуры спирали ДНК — факт в высшей степени замечательный, и его открытие Дж. Уотсоном и Ф. Криком в 1953 году по праву считается одним из главных событий биологии XX века.

Собственно говоря, «открытие» не вполне подходящее слово. Дж. Уотсон и Ф. Крик предсказали эту структуру, исходя из самых общих положений кристаллографии и рентгенограмм, истолковать которые можно было очень и очень по-разному. Их работа не только положила начало триумфальному (как, по крайней мере, кажется со стороны) шествию молекулярной биологии — она утвердила право биологов на теоретические исследования, считавшиеся до тех пор почти неприличными. Сам великий Э. Чаргафф — звезда первой величины в области исследования нуклеиновых кислот — отнесся к намерению Дж. Уотсона и Ф. Крика расшифровать структуру ДНК чисто умозрительными методами с великолепным ироническим презрением. Буквально накануне публикации Дж. Уотсоном и Ф. Криком их эпохальной статьи он справлялся в письме к руководителю лаборатории Дж. Кендрью, чем там занимаются его клоуны от науки. Такова была участь биолога-теоретика в недавнем прошлом (к сожалению, также и значительное время спустя — авторам известны многочисленные примеры).

Уже сама структура двойной спирали подсказывает способ реализации процесса репликации. Ведь если основания обладают столь четко выраженным попарным сродством, значит, у одиночной нити ДНК каждый свободный нуклеотид будет «стараться» занять место напротив своего партнера. А после этого стоит только последовательно соединить их, выстроенных таким образом, в одну нить. Так оно примерно и происходит на самом деле. В процессе репликации двойная спираль раскручивается, и на каждой отделившейся ее нити «нарастает» новая комплементарная нить.

Присоединившиеся нуклеотиды «сшиваются» с остальной частью наращиваемой нити при помощи специального фермента. Вот и все. Раскручивание старой и наращивание новых спиралей продолжается до тех пор, пока спираль не раскрутится полностью, а каждая из ее нитей образует со свежесинтезированной комплементарной копией новую двойную спираль.

Схема процесса транскрипции — синтеза молекул РНК на матрице ДНК — в принципе сходна с репликацией; это и неудивительно, если вспомнить значительную структурную близость молекул ДНК и РНК. Наиболее существенное отличие заключается в том, что комплементарная последовательность РНК копирует не всю молекулу ДНК, а только ее фрагменты; важно также, что в качестве матрицы для синтеза РНК используется только одна из нитей, образующих двойную спираль, но не ее комплементарная копия. В искусственных условиях удается получить смешанную двойную спираль, образованную молекулами РНК и ДНК; такие спирали характерны для некоторых вирусов.

Как синтезируются белки

И процесс репликации, и родственный ему процесс транскрипции способны вызвать немало удивления совершенством своей организации даже в столь бледном и лишенном подробностей описании. Однако по сравнению с молекулярными механизмами биосинтеза белка они выглядят сравнительно простыми и почти очевидными.

В процессе синтеза молекул нуклеиновых кислот расположение нуклеотидов в определенном порядке происходит как бы само по себе, за счет сродства каждого из нуклеотидов к своему комплементарному партнеру. Первоначально биологи предполагали, что и при синтезе белка на матричной молекуле РНК происходит нечто подобное: каждая аминокислота стремится «примкнуть» к кодирующему ее триплету, а последовательное соединение аминокислот осуществляется особым ферментом.

Начались поиски принципов структурного соответствия между аминокислотами и кодирующими их триплетами, более того, кое-кому такие принципы удалось даже установить. Многие значительные открытия побуждают исследователей действовать по аналогии и по этой самой аналогии открывать несуществующие вещи. Это относится, конечно, не только к биологам. Скажем, очень часто в качестве примера блестящего успеха теоретической научной мысли приводят открытие французским астрономом У. Леверье планеты Нептун — знаменитое «открытие на кончике пера».

В этой связи редко вспоминаются факты менее известные: когда У. Леверье опубликовал свою работу и астрономы действительно нашли в указанном им месте неизвестную ранее планету, как из рога изобилия посыпались сообщения об открытии «по методу Леверье» еще примерно полутора десятков абсолютно несуществующих планет. Некоторые из них исходили — увы! — от самого У. Леверье, до конца своей жизни не отказавшегося от попыток обнаружить на орбите, находящейся внутри орбиты Меркурия, планету Вулкан, существование которой им было предсказано.

1 ... 29 30 31 32 33 34 35 36 37 ... 45
На этой странице вы можете бесплатно читать книгу Беседы о жизни - Галактионов Станислав Геннадиевич бесплатно.

Оставить комментарий