Рейтинговые книги
Читем онлайн Океан и атмосфера - Слава Кан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 36

Анализируя расчеты, Карачев сделал вывод, что величина составляющих теплообмена зависит от конкретной синоптической ситуации. Циркуляционные возмущения в атмосфере приводят к усилению взаимодействия океана и атмосферы и потере тепла поверхностью океана. При прохождении пассатного фронта турбулентный теплообмен за фронтом увеличивается в 3–4 раза, а затраты тепла на испарение — в 2 раза.

Статьи прихода и расхода тепла могут быть получены непосредственно из наблюдений. Но практически это слишком сложно, а подчас и невозможно, из-за отсутствия достаточно точных приборов, условий и многих других причин. Поэтому составляющие теплового баланса, как правило, рассчитывают косвенными методами, используя основные метеорологические наблюдения над температурой, влажностью, ветром, облачностью и др.

Расчеты теплового баланса нашли широкое применение в морских прогнозах. Баланс исчислялся по упрощенной формуле, состоящей из трех частей. В первую часть, учитывающую процессы испарения и теплообмена, входили температура воздуха и воды, а также влажность; во вторую — коротковолновая радиация (зависимость от поглощенной радиации); в третью — длинноволновая радиация.

Даже не совсем совершенные методы расчета теплового баланса помогают понять сложные процессы, происходящие в океане и атмосфере.

Таким образом, можно сказать, что приходо-расходная книга тепла, о которой мечтал Воейков, заведена и постоянно обновляется. Более того, появляются в этой области и ранее неизвестные проблемы, в частности возможность влияния на некоторые приходо-расходные статьи баланса. Такое воздействие может быть и независимым от воли человека. В 1883 г. произошло грандиозное извержение вулкана Кракатау. Частицы, вылетевшие из жерла вулкана и попавшие в стратосферу, благодаря медленному падению и горизонтальному перемешиванию распространились вокруг Земли довольно равномерно. При этом способность верхней атмосферы отражать солнечную радиацию увеличилась столь значительно, что в течение нескольких лет средняя годовая температура по сравнению со средней многолетней понизилась на 0,5–1 °C.

Мы уже знаем, что различия в температурах между полярными и экваториальными областями, поддерживаемые обменом излучения между Землей и окружающим пространством, составляют причину общей циркуляции земной атмосферы. Извержение Кракатау наводит на мысль, что такую разность температур можно создать искусственно, распространяя тонкую пыль в атмосфере. Есть и другие предложения, в частности связанные с возможностью растопить морские льды. Одним из них является проект покрытия полярных шапок Земли угольной пылью.

Проблема управления термическими и другими процессами в океане все более приближается к реальности. В то же время продолжается изучение связей, существующих в природе, многое в которых еще неясно. К ним, в частности, относится влияние циклонических возмущений в атмосфере на изменение поля температуры и циркуляцию поверхностных вод океанов. Данный вопрос Л. С. Минина и В. Д. Пудов изучали на примере прохождения тайфуна Трикс. Он развился 10 июля 1978 г. из тропического возмущения в виде обширного облачного скопления над поверхностью тропической зоны Тихого океана с температурой 27–28°. С 8 по 13 июля температура воды существенно не менялась. Но по мере увеличения площади скопления и усиления ветра поверхностная температура океана начала меняться. Тропический циклон двигался до 15 июля на запад, потом замедлил движение, описал петлю, направился на юго-восток и с 19 июля вновь восстановил западное направление. На первом этапе западного движения Трикса (с 14 по 18 июля) циклон активно углублялся, давление в центре упало от 1004 до 975 мб, а ветер усилился от 35 до 70 узлов[3]. Развившийся тайфун вовлек в циклоническую циркуляцию поверхностные слои воды, что отчетливо показали карты изотерм. Совпадавшее вначале с траекторией тайфуна положение изотермы 28 °C затем переместилось (и несколько деформировалось) на юго-запад на 400–500 км. Это указывает на то, что в передней части тайфуна произошло понижение температуры (в акватории 135°—140° в. д.), связанное с переносом охлажденных поверхностных вод под действием ураганного ветра. А в тыловой части тайфуна по той же причине произошел нагон теплых поверхностных вод. Они продвинулись к востоку и северо-востоку столь же значительно. Таким образом, и воды, и воздух совершили циклоническое движение с естественным инерционным запаздыванием по отношению к усилению ветра в тайфуне Трикс. Кроме того, прохождение тайфуна вызвало образование гидрологического холодного фронта в передней части циклона и теплого — в тылу. Изменение температуры в поверхностном слое воды составило примерно 1 °C.

Тайфун Трикс не был особенно мощным — скорость ветра в нем не превышала 70 узлов (критерием, когда тропический циклон переходит в зрелую стадию, считается 63 узла). Но и в этом случае взаимодействие с поверхностью океана оказалось отчетливо ощутимым. Напомним, что изменилась не только температура, но и сама структура циркуляции вод на гигантской площади, протяженностью 3,5 тыс. км и шириной около 1 тыс. км. Расчет связи между скоростью дрейфового течения и скоростью штормовых и ураганных ветров показал, что отношение данных величин при урагане приблизительно в 2 раза больше, чем при нештормовых условиях.

Явление воздействия атмосферного процесса на океаническую поверхность сейчас уже хорошо известно — каждый тропический циклон оставляет след в толще океана, порождая в нем систему концентрических колец, вращающихся в противоположных направлениях. Это значит, что возникают течения различных направлений и температурные аномалии. Горизонтальная неоднородность на поверхности океана достигает в пространстве 2 тыс. км, а временная — как полагают, около 50 суток.

Наблюдения, проведенные в экспедиции «Тайфун—78», позволили обнаружить еще один интересный факт — температурная аномалия в северо-западной части Тихого океана связана с облачностью. Во время гидрологической съемки между координатами 20° — 28° с. ш. и 143° — 151° в. д. через каждые 90 миль было произведено шесть зональных разрезов с измерением температуры и солености до глубины 1 км. Это дало возможность заметить пятно аномально холодных вод в поверхностном слое океана, наблюдавшееся также и в поле плотности. Анализ наблюдений и расчеты показали, что максимум скорости циклонической циркуляции приходился на слой 30–75 м. Температура воды на поверхности океана была на 1–2 °C ниже температуры воздуха в приводном слое за пределами аномалии. Следовательно, естественно было ожидать инверсию температуры в пограничном слое атмосферы и, как результат, ослабление облачности. Сопоставление синоптических карт позволило выделить полностью безоблачную зону, оконтуривающую холодное пятно воды в океане. В шпротном направлении зона простиралась на 150–200 км, в меридиональном — примерно на 150 км. Возможно, что вытянутая безоблачная зона указывала на путь перемещения циклонического вихря в океане. Таким образом, анализируя по ежедневным синоптическим картам облачность, можно заметить циклонические вихри в океане.

В свое время А. Д. Добровольский указывал, что в истории исследования Тихого океана было четыре периода: поисков (1513–1725 гг.), обследования (1725–1873 гг.), исследования (1873–1918 гг.), детального исследования (1918–1947 гг.). Последняя дата в этом кратком перечне совпала с выходом в дальневосточные моря и Тихий океан флагмана советского научного флота, экспедиционного судна «Витязь». Исследования не только продолжаются в наши дни, но все более развиваются и расширяются, становясь проблемными, и главное место среди них занимает вопрос взаимодействия океана и атмосферы.

Одновременно с интенсификацией наблюдений и их накоплением развивается их обработка, численные методы, углубляются теоретический подход и представления о сущности самого явления. Действуя совместно, эти направления имеют конечную цель — познание, а затем и предсказания процессов, происходящих в двух взаимодействующих сферах.

Динамическое взаимодействие

Строго говоря, трудно разделить термическое и динамическое взаимодействие океана и атмосферы, скажем, на примере реакции поверхностных вод океана на проходящий над ним тайфун. Более объективным, возможно, является, как считает советский океанолог А. Ф. Плахотник [1978], выделение двух групп вопросов: собственно взаимодействия (сюда относятся характер, механизм и масштабы взаимодействия) и изучения пограничных слоев (океан и прилегающая к нему атмосфера). Планетарно пограничными слоями считают примыкающие друг к другу слои толщиной порядка 1,5 км, в пределах которых непосредственно проявляется взаимодействие океана и атмосферы — турбулентный перенос энергии и ее рассеивание.

1 ... 27 28 29 30 31 32 33 34 35 36
На этой странице вы можете бесплатно читать книгу Океан и атмосфера - Слава Кан бесплатно.

Оставить комментарий