Как уже было сказано, Корана успешно решил и вторую из поставленных задач. В июне 1970 года на встрече биохимиков и молекулярных биологов в его родном университете на вопрос, чем ученый занят сейчас, после получения Нобелевской премии, Корана ответил, что ему наконец удалось получить ген в пробирке! Его лаборатория занималась синтезом гена целых пять лет.
Мы знаем, что другой нобелевский лауреат, Холли, раскрыл тайну расположения нуклеотидов в транспортной РНК, служащей для переноса аланина. На основании данных о расположении нуклеотидов в тРНК Корана набросал на бумаге схему структуры гена (или ДНК), который «отвечает» за синтез данной тРНК. Этот набросок позволил ему через пять лет получить первый «синтетический» ген: он состоял из 77 пар нуклеотидов, расположенных в такой последовательности, при которой ДНК определяет синтез аланиновой тРНК.
После этого группа Кораны приступила к экспериментам по «размножению» молекул синтезированного гена при помощи ферментов Корнберга, вызывающих редупликацию молекул ДНК, о которой мы уже говорили; надо было испытать активную способность «гена в пробирке», который должен управлять синтезом аланиновой тРНК. А за этим последовали опыты, имеющие целью подтвердить биологическую активность «синтетического» гена и в живой клетке. Ведь существовать ему предстояло именно в ней! Пятилетняя напряженная работа группы Кораны в конце концов успешно увенчалась синтезом некоего вещества, которое в природе, в живых клетках, несомненно, существует.
Но вернемся к нашей схеме. Она дает упрощенное представление о том, какое расположение трех триплетов нуклеотидов в молекуле ДНК определяет окончательный порядок трех аминокислот в образующейся на рибосомах молекуле белка.
Триплеты в молекуле ДНК:
… — (А — А — А) — (Г — А — Г) — (Т — Т — Т) —…
Дополняющие кодоны в молекуле иРНК:
… — (У — У — У) — (Ц — У — Ц) — (А — А — А) —…
Антикодоны в трех молекулах тРНК:
(А — А — А) (Г — А — Г) (У — У — У).
Расположение трех аминокислот во фрагменте молекулы белка:
… — Фен — Лей — Лиз —…
Приведенные триплеты молекулы ДНК можно считать частью «генетической информации», заложенной в гене, управляющем синтезом определенного белка. В макромолекуле этого белка на соответствующем месте будет находиться тройка аминокислот: фенилаланин — лейцин — лизин.
Согласно изложенному представлению, в клетке существует, таким образом, следующая иерархия макромолекул:
ДНК → РНК → Белок.
В 1970 году стали появляться сообщения о том, что при некоторых обстоятельствах, например при инфицировании клетки вирусами, имеющими в своем составе РНК, а не ДНК, генетический код для синтеза белков «записан» в молекуле РНК. Эти вирусные РНК в клетке-хозяине «самовоспроизводятся» и управляют синтезом ДНК, необходимой для образования вирусных белков. Таким образом, мы столкнулись с тем, что генетическая информация может быть перенесена от РНК к ДНК.
В других случаях оказался возможным и прямой перенос генетической информации с ДНК на белок без посредничества РНК.
Все эти сведения вызвали широкую полемику в ученых кругах. Обсуждался вопрос — остается ли в силе центральная догма молекулярной биологии[23]. Итог дискуссии подвел один из «отцов» этой догмы, Ф. Крик, который охарактеризовал уровень современных знаний в данной области следующим образом.
Существуют общие и специальные переносы генетической информации. Общие переносы можно сформулировать в такой последовательности:
ДНК → ДНК
ДНК → РНК
РНК → Белок
Специальные переносы информации, совершающиеся лишь в особых случаях, могут выглядеть и так:
РНК → РНК
РНК → ДНК
ДНК → Белок
Все это хорошо видно на рисунке ниже, где общие переносы и их направление показаны сплошной линией, а специальные — штриховой.
Но открытия 1970 года на этом не закончились. Самые волнующие события этого года связаны с изучением и поиском онкогенных вирусов — вирусов, вызывающих некоторые формы опухолей.
Перенос генетической информации. Сплошные стрелки — общий перенос; штриховые — специфический.
На Международном онкологическом конгрессе в мае 1970 года в Хьюстоне доктор X. Темин из Висконсинского университета сообщил об открытии фермента, способного синтезировать ДНК в присутствии РНК. И этот фермент и РНК находятся в вирусе Рауса, известном уже в течение нескольких десятилетий как возбудитель саркомы. Открытие Темина в скором времени подтвердил его соотечественник Д. Балтимор. Другой американский ученый, С. Спигелмен, сообщил в конце июня 1970 года, что тот же фермент обнаружен им в семи различных онкогенных вирусах. Летом того же года на Международном конгрессе микробиологов в Мексике Спигелмен сообщает о новом неожиданном факте. Оказывается, онкогенные вирусы содержат еще один фермент — «полимеразу ДНК», связанную с ДНК и ранее известную как «полимераза ДНК Корнберга».
Но эстафету снова перехватывает Темин, открывший третий фермент в вирусе саркомы Рауса: эндонуклеазу, «рассекающую» длинную двойную спираль ДНК на короткие отрезки. Возможно, есть и четвертый фермент — лигаза, осуществляющая соединение этих фрагментов снова в длинную макромолекулу ДНК»
В ноябре 1970 года в Париже на Международном коллоквиуме, который проводился фирмой, занимающейся производством антибиотиков, американский ученый X. Ханафуза сообщил общественности, что обе полимеразы вируса Рауса играют важную роль в превращении здоровых клеток в опухолевые. Другие участники коллоквиума сообщили, что из белых кровяных телец людей, пораженных белокровием, была выделена полимераза ДНК, связанная с РНК. Таким образом, фермент, присутствующий в онкогенных вирусах, был найден и в белых кровяных тельцах больных лейкозом. Спигелмен сообщил, что этот фермент был им обнаружен в девяти случаях лейкоза и ни разу не был найден в нормальных здоровых лейкоцитах. Это означало, что обнаружение фермента в белых кровяных тельцах могло бы служить ранним диагностическим признаком лейкоза.
Р. Галло из Национального онкологического института в Бетесде (США) получил тот же фермент из лимфоцитов трех пациентов, страдающих лимфоцитарным лейкозом. Исследовав действие некоторых соединений на этот фермент, он установил, что антибиотик рифампицин снижает активность фермента (в лабораторных условиях, в пробирке) на 50 %. А один из производных рифампицина — диметилрифампицин — полностью «блокирует» действие фермента.
Конечно, еще рано праздновать победу над лейкозом. Но одно несомненно: успехи молекулярной биологии в этом направлении могут привести к важным практическим результатам.
Та форма «состязания», которая наблюдается сейчас в среде ученых, должна была бы, как нам кажется, превратиться в сотрудничество. Прав Спигелмен, который сказал, что следовало бы больше думать о защите страдающих от белокровия детей, чем о времяпрепровождении ученых в Стокгольме после получения ими Нобелевской премии.
Таково было в общих чертах положение дел к концу 1970 года. Но наука не стоит на месте. В конце января 1971 года в Лондоне состоялся симпозиум, регулярно созываемый Международной организацией ЦИБА. На симпозиуме опять выступил Спигелмен и опять с неожиданными сообщениями.
Он доложил о результатах исследований нескольких сотен образцов клеток из различных форм раковых образований у человека; в каждом из них присутствовала полимераза ДНК, связанная с РНК. В здоровых клетках взрослых людей фермент не был найден ни в одном случае. Работы Спигелмена и его коллег доказал и, что при помощи фермента можно не только диагностировать лейкоз, но и следить за процессом лечения и выздоровления.
Второе сообщение имело еще более важное значение. Спигелмен получил этот фермент в чистом виде из РНК онкогенных вирусов, ему удалось также получить фермент и из клеток больных раком. Но эти два фермента оказались различными! Значит, фермент, найденный в раковых клетках человека, не вирусного происхождения, как считали ранее.
Однако на самую большую неожиданность Спигелмен наткнулся перед публикацией своих последних наблюдений. Стремясь исследовать некоторые другие нормальные клетки, чтобы установить, не присутствует ли все-таки в них этот загадочный фермент, он исследовал ткани человеческого плода (выкидыша). Результат был подобен разорвавшейся бомбе — клетки эмбриона содержали тот же фермент! Действительно, неожиданный поворот событий! Удивительные ферменты, которые, как полагали, проникают в тело человека с вирусными частицами и имеют какую-то связь с раком, вдруг обнаружены в зародыше человека.