М. Фарадей
Королевский институт, 12 марта 1832 г.».
Воззрения Фарадея на природу электрических явлений изложены в ряде работ[437], опубликованных непосредственно одна задругой. Однако они долго не встречали признания в ученом мире и даже вызывали возражения. В 1846 году по просьбе редактора журнала «Philosophical Magazine» Ричарда Филлипса[438]Фарадей довольно подробно изложил свои взгляды в статье «Мысли о лучевых колебаниях». В этом мемуаре мы читаем: «Точка зрения, которую я имею смелость предложить, рассматривает, таким образом, излучение как колебания высокого порядка в силовых линиях, которые, как известно, соединяют друг с другом частицы и тем самым материальные массы. Эта точка зрения стремится устранить эфир, но не колебания. Тот род колебаний, который, как я полагаю, единственно может объяснить чудесные, разнообразные и прекрасные явления поляризации, не тот, что появляется на поверхности возмущенной воды или в звуковых волнах в газах или жидкостях, ибо в последних случаях колебания бывают прямыми, т. е. по направлению к центру действия или от него, тогда как первые имеют направление вбок. Мне представляется, что равнодействующая двух или более силовых линий находится в благоприятном состоянии для этого движения, которое можно рассматривать как эквивалентное колебанию вбок»[439].
Таким образом, оригинальные воззрения Фарадея касались не одной области электричества, а распространялись и на оптику, затрагивая вопрос о природе света. Но эти поистине революционные взгляды не были поняты. Много лет спустя профессор О. Д. Хвольсон писал: «Какое громадное значение имеют в науке привычка, предвзятые взгляды, можно видеть из следующего, почти невероятного факта. Несмотря на то, что всякое открытие Фарадея представляло неоценимый вклад в науку; несмотря на то, что Фарадея всегда признавали за величайшего экспериментатора всех времен; что Фарадею принадлежит создание многих важнейших отделов физики, — все-таки на открытое им влияние диэлектриков в течение нескольких десятков лет не было обращено никакого внимания. Это действие слишком плохо вязалось с ходячим и глубоко укоренившимся взглядом об электрических явлениях, со взглядом, что электрический заряд находится на проводнике и действует вдаль силами, беспрепятственно и неизменно проникающими через окружающую непроводящую среду… К счастью, нашелся земляк Фарадея, который, исходя из основных положений фарадеевского учения об электрических и магнитных явлениях, сумел устранить почти все то, что в них было неясно и туманно, найти прочный фундамент для широкого их развития и облечь все то, что у Фарадея представлялось неосязательным, темным и почти метафизическим, в строго математическую форму. Этот гениальный преемник Фарадея был Клерк Максвелл»[440].
Труды Максвелла касались многих областей физики, механики и астрономии. Главные же его работы составляют исследования по электромагнетизму и кинетической теории газов. Продолжая начатое Фарадеем дело[441], математически обрабатывая его идеи, Максвелл пришел к далекоидущим выводам, выдвинув электромагнитную теорию света (1864), которая является одним из самых великих достижений науки XIX века. Считая свет явлением электромагнитным, Максвелл математически доказал, что электрические волны должны распространяться со скоростью, равной отношению электромагнитной единицы к электростатической единице зарядов. Как известно, эта величина действительно совпадает со скоростью распространения электромагнитных колебаний и почти равна скорости света (300 тысяч километров в секунду). Различия между скоростями света и распространения электромагнитной энергии отсутствуют, если скорости измерены в безвоздушном пространстве.
Но и глубочайшие теоретические соображения Максвелла, содержавшие в себе гениальное предвидение дальнейшего прогресса науки на долгие годы, также не сразу получили признание. Его современникам они казались слишком отвлеченными и даже искусственными. Необходимо было не только подвергнуть их экспериментальной проверке, но и сделать наглядными, доходчивыми, чтобы те практические выводы из них, которые могли в первую очередь получать техническое применение, сделались понятными. Прежде всего нужно было пересмотреть укоренившиеся представления о протекании электричества по проводам и о тех явлениях в окружающем провод пространстве, которые обнаруживаются при прерывании в нем тока. Нужно было составить себе наглядную картину электромагнитных процессов, происходящих в проводе и вблизи него. Дальнейший вклад первостепенного значения внес в учение об электромагнитных колебаниях современник Максвелла Уильям Томсон. Он по-новому рассмотрел процесс протекания электрического тока по проводам и дал обоснование для точной теории электрических колебаний в сложных цепях.
Электрическая цепь из емкости, индуктивности и сопротивления, которая была им подробно изучена и применена в ряде практических случаев, получила специальное название «контур Томсона», а электромагнитные колебания, в нем возникающие, — «томсоновских колебаний». Та картина протекания электрического тока в колебательном контуре, которая создается в нашем воображении на основании работ Томсона, легла в основу всех дальнейших экспериментов с электрическими колебаниями и волнами. Замечательным выводом из работ Томсона является теория резонанса тока и напряжения, связанных с накоплением электромагнитной энергии в диэлектриках конденсаторов и в магнитном поле индуктивностей, из которых составляется резонансный контур. Такой резонансный (колебательный) контур по аналогии с подобными акустическими резонаторами стали называть резонатором. В приближении творческой мысли к представлению о возможности осуществления беспроводной связи не менее важными, чем работы Томсона, являются замечательные эксперименты с колебательным разрядом конденсатора, выполненные В. Федцерсеном[442]. Они наглядно показали, что электрическая искра может служить источником для создания электрических колебаний. Это был отправной этап для разработки всей высокочастотной аппаратуры, которой далее пользовались и предшественники А. С. Попова, и он сам. Возбуждением электрических колебаний искрой воспользовались в своих опытах и Герц, и Лодж, и многие другие. Даже после смерти Попова искровой разряд долгое время применялся в аппаратах беспроводной связи.
Важный дальнейший шаг в направлении углубления теории Максвелла сделан был в 1874 году русским профессором Н. А. Умовым[443], который математически рассчитал мощность энергии разряда в пространстве и наметил основные физические свойства явлений, связанных с распространением электромагнитных волн. Насколько важное значение придавали работе Умова, можно судить по тому, что в настоящее время вектор, характеризующий величину мощности распространяющейся электромагнитной энергии, во всем мире называют вектором Умова — Пойнтинга (последний занимался этими вопросами позднее).
(adsbygoogle = window.adsbygoogle || []).push({});