Рейтинговые книги
Читем онлайн Лекции - Никола Тесла

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 84

Поразительным является то, что разряд сквозь газ проходит тем легче, чем больше частота импульсов. В этом случае его поведение диаметрально противоположное металлическому проводнику. В последнем случае с повышением частоты роль импеданса возрастает, но газ ведет себя скорее как цепь конденсаторов: возможность прохождения заряда через него, видимо, зависит от скорости изменения потенциала. Если это так, тогда в вакуумной трубке любой длины, неважно какова сила тока, самоиндукция будет ничтожно мала. Тогда мы имеем проводник в виде газа, способный передавать электрические импульсы любой частоты которую мы сможем получить. Если бы частоту удалось поднять до достаточно высокого уровня, тогда можно было бы реализовать любопытную систему распределения электроэнергии, которая заинтересовала бы газовые компании: металлические трубы, заполненные газом, где металл — это изолятор, а газ — проводник. Конечно, можно изготовить полый медный стержень, разрядить в нем газ, и пропуская импульсы достаточно высокой частоты через контур вокруг него, довести газ внутри до высокой степени накала; но что касается сил, то весьма сомнительно, будет ли при таких импульсах медный стержень действовать как статический экран. С такими парадоксами и очевидно невозможными ситуациями мы сталкиваемся на каждом шагу в нашей работе, и именно в них в большой степени и заключается основная привлекательность исследований.

Здесь у меня короткая широкая трубка, из которой откачан воздух, покрытая толстым слоем бронзы, не дающей свету поступать внутрь. Металлический зажим для подвешивания трубки укреплен посередине и касается трубки. Теперь я хочу зажечь газ внутри, подвесив трубку на проводе, соединенном с катушкой. Любой, кто проводит этот опыт впервые, скорее всего пожелает остаться в одиночестве, дабы не стать посмешищем для ассистентов. И всё же трубка освещается, несмотря на металлическое покрытие, и свет ясно виден сквозь него. Длинная трубка, покрытая алюминиевой бронзой, довольно ярко загорается, если ее держать в одной руке, а другой касаться вывода катушки. Мне могут возразить, что покрытия недостаточно хорошие проводники; однако, даже если они имели бы большое сопротивление, они должны экранировать газ. Конечно, они экранируют газ, находясь в состоянии покоя, но не так хорошо, когда на них волнообразно воздействуют. Потери энергии в трубке, несмотря на экран, происходят благодаря газу. Если бы мы взяли полый металлический шар и заполнили его абсолютно несжимаемым жидким диэлектриком, внутри шара не было бы потерь, и, соответственно, можно было бы сказать, что содержимое прекрасно экранировано, хотя потенциал и быстро меняется. Даже если шар заполнить маслом, потери всё равно были бы меньше в сравнении с газом, так как в последнем случае сила порождает смещения, а это означает удары и столкновения.

Неважно, под каким давлением находится газ, он становится важным фактором нагрева проводника, когда электрическая плотность велика, а частота высокая. То, что для нагрева проводника путем светящегося разряда воздух является очень важным элементом, так же точно, как экспериментально доказанный факт. Можно проиллюстрировать действие воздуха при помощи следующего опыта: я беру короткую трубку с небольшим вакуумом внутри, по центру которой от одного конца до другого проходит платиновый провод. По нему пропускаю постоянный или низкочастотный ток и он равномерно нагревается по всей длине. Нагрев происходит вследствие проводимости, или фрикционных потерь, а газ вокруг провода, как видим, не выполняет никакой функции. Но теперь позвольте мне пропустить прерывистые разряды или высокочастотный ток. И снова провод нагревается, но только в этот раз в основном на концах и меньше всего в середине; и если частота импульсов, или скорость изменения, достаточно высока, то провод можно даже перерезать посередине, так как весь нагрев происходит благодаря разреженному газу. Здесь газ может выступать только как проводник, не имеющий сопротивления, отводящий ток от провода, поскольку сопротивление последнего сильно возрастает, при этом лишь нагревая концы провода, так как они сопротивляются прохождению разряда. Но совсем необязательно, чтобы газ в трубке был проводником; давление его может быть крайне низким, и всё же концы провода нагреются, как доказано опытом, только в данном случае эти два конца не будут иметь электрического контакта через газообразную среду. Итак, то что происходит при высоких частотах и потенциалах в вакуумной трубке, происходит и при разряде молнии при обычном давлении. Нам необходимо лишь помнить об одном из фактов, которые мы обнаружили во время этих исследований, а именно: в ответ на высокочастотные импульсы газ при обычном давлении ведет себя так, как будто он разрежен. Я думаю, что во время разрядов молнии часто провода или предметы-проводники испаряются только из-за того, что присутствует воздух, и что если бы проводник был погружен в изолирующую жидкость, он был бы в безопасности, так как тогда энергия была бы потрачена где-то в другом месте. Исходя из поведения газов в ответ на внезапные импульсы высокого потенциала я склонен сделать вывод, что не может быть более верного пути отвода разряда молнии, чем дать ему пройти через некий объем газа, если только это можно практически осуществить.

Есть еще два свойства, на которых, я считаю, необходимо остановиться в связи с данными опытами, — «лучистое состояние» и «неударный вакуум».

Каждый, кто изучал труды Крукса, должен находиться под впечатлением, что «лучистое состояние» — это свойство газа, неотделимое от высокой степени вакуума. Но следует помнить, что явления, наблюдаемые в вакуумном сосуде, ограничены характером и емкостью применяемого устройства. Я думаю, что в колбе молекулы или атомы двигаются по совершенно прямой линии не потому, что не встречают препятствия, а потому, что скорость, переданная им, достаточна для того, чтобы двигаться по прямой. Средняя длина прямого пути — это одно, а скорость — количество энергии, связанное с движущимся телом, — совсем другое, и при обычных обстоятельствах, я полагаю, это всего лишь вопрос потенциала или скорости. Катушка с разрядником, когда потенциал очень высок, вызывает флюоресценцию и отбрасывает тени при сравнительно низком вакууме. При разряде молнии материя движется по прямой при нормальном давлении, когда средняя длина свободного пробега крайне мала, и часто изображения проводов или иных металлических предметов проецируются частицами, резко отброшенными по прямой линии.

Для того чтобы экспериментально продемонстрировать правильность приведенных высказываний, я приготовил лампу. В колбе L (рисунок 31) на нити накаливания f я укрепил кусочек извести i. Нить накаливания соединена с проводом, идущим в лампу, конструкция которой показана на рисунке 19. Когда лампа подключается к проводу, соединенному с выводом катушки, а последняя начинает работать, кусок извести i и выступающая часть нити f начинают подвергаться бомбардировке. Степень откачки воздуха такова, что потенциала катушки достаточно для начала флюоресценции, которая исчезает по мере ухудшения вакуума. Так как известь содержит влагу, которую отдает при нагревании, флюоресценция длится несколько мгновений. Когда известь достаточно нагрета, влаги отдается столько, сколько нужно, чтобы уничтожить вакуум. Так как бомбардировка продолжается, одна часть куска извести нагревается больше, чем другие, и в результате почти весь разряд проходит через эту точку, которая сильно нагревается, и белый поток частиц извести (рисунок 31) испускается из этой точки. Этот поток состоит из «лучистой материи», хотя уровень вакуума низкий. Частицы движутся по прямой, так как скорость, сообщенная им, велика, и это происходит по трем причинам — большой электрической плотности, высокой температуры небольшого участка, и того, что частицы извести легко отрываются и уносятся — гораздо легче частиц углерода. При тех частотах, которые мы можем получить, частицы ощутимо отрываются и отбрасываются на значительное расстояние, но при достаточно высоких частотах такого не произойдет: в этом случае будет распространятся только напряжение или через колбу будут передаваться вибрации. Нечего и говорить о том, чтобы достичь такой высоты, если предположить, что атомы движутся со скоростью света; но я полагаю, что такое невозможно — для этого потребуется огромный потенциал. При тех потенциалах, которые мы можем получить, даже от катушки с разрядником, скорость не должна быть важна.

Что касается «неударного вакуума» следует отметить, что он имеет место только при низкочастотных импульсах и является необходимым в силу невозможности отвода достаточного количества энергии такими импульсами в высоком вакууме, так как те немногие атомы, которые находятся рядом с выводом, вступая с ним в контакт, отталкиваются от него и держатся на расстоянии сравнительно долго, и поэтому не выполняется достаточно работы, чтобы эффект стал виден для глаза. Если разницу потенциалов на выводах поднять, то диэлектрик пробивается. Но при очень высокой частоте импульсов такого пробоя не произойдет, так как любое количество работы может быть выполнено путем постоянного возбуждения атомов в вакуумном сосуде. Нетрудно — даже при той частоте, которую мы получаем от нашего генератора, — достичь той стадии, когда разряд не проходит между двумя электродами в узкой трубке, причем каждый электрод соединен с выводом катушки, но трудно достичь того момента, когда световой разряд не формируется вокруг каждого электрода.

1 ... 34 35 36 37 38 39 40 41 42 ... 84
На этой странице вы можете бесплатно читать книгу Лекции - Никола Тесла бесплатно.
Похожие на Лекции - Никола Тесла книги

Оставить комментарий