Рейтинговые книги
Читем онлайн У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 28

Архимед. Работа Жана Гужона. Фасад Лувра, Париж.

БЕСКОНЕЧНОСТЬ КАНТОРА

С 1867 по 1869 год Кантор в Берлине проводил свои первые исследования под руководством Леопольда Кронекера (спустя несколько лет они стали врагами). В то время Берлин был одним из самых мощных математических центров в мире (наряду с Геттингеном и Парижем). Первые исследовательские работы Кантора не слишком впечатлили его преподавателей, которые даже считали, что он никогда не станет выдающимся математиком. В 1870 году Кантору пришлось переехать из центра науки, Берлина, на периферию. Молодой и неизвестный ученый начал собственные исследования в Галльском университете.

Когда математик проводит исследование, его цель — решить определенную проблему. Даже сегодня, если спросить у математика, над чем он работает, его ответ наверняка будет состоять в формулировке задачи, которую он пытается решить. Чтобы понять задачу, занимавшую Кантора в 1870 году, нам нужно кратко рассказать о рядах Фурье.

В начале XIX века французский математик Жозеф Фурье разработал метод, позволяющий разложить любую периодическую функцию на сумму определенных элементарных функций (каждая из которых меняет амплитуду, частоту или фазу исходной функции). Фурье успешно применил его для изучения таких волновых явлений, как распространение тепла или колебания пружины. Так как эти суммы обычно затрагивают бесконечное (теоретически) число функций, а в математике результат сложения бесконечного числа величин называют рядом, этот метод получил название рядов Фурье. Сегодня он является важным инструментом во многих отраслях науки, таких как физика и инженерное дело.

В 1860-х годах, также в Галле, немецкий математик Эдуард Гейне работал над проблемой определения того, всегда ли разложение периодической функции на сумму элементарных волн является единственным.

Вопрос о единственности разложения часто встречается в математике. Возьмем натуральные числа (то есть образующие вышеупомянутую последовательность 1, 2, 3, 4...). Вспомним, что простые числа — это числа, которые делятся только на единицу и на самих себя (например, 2, 3, 5 и 11 — простые числа, в то время как 9 таковым не является, поскольку делится на 3).

Уже много тысячелетий известно (об этом знал и Евклид в III веке до н. э.), что любое натуральное число, большее 1, либо простое, либо может быть записано как произведение простых.

РЯДЫ ФУРЬЕ

Французский математик Жан Батист Жозеф Фурье (1768-1830) в начале XIX века установил, что любая периодическая функция — это результат сложения бесконечного числа синусоидальных волн. На рисунке 1 представлена периодическая функция со скачками, или разрывами, во всех целых нечетных числах (положительных и отрицательных), в то время как на рисунке 2 показана основная синусоидальная волна.

РИС. 1

РИС. 2

Функция на рисунке 1 — это результат сложения бесконечного количества волн, изменяющих различными способами основную волну на рисунке 2. Например, мы можем сжать или растянуть ее вертикально или горизонтально. На рисунках 3 и 4 показано, соответственно, вертикальное растяжение волны с рисунка 2 и ее сжатие.

РИС.З

РИС. 4

На рисунке 5 показано горизонтальное сжатие волны с рисунка 2. Волны также могут перемещаться по вертикали или горизонтали: на рисунке 6 показана волна с рисунка 2, смещенная горизонтально.

РИС. 5

РИС. 6

Единица — особый случай, который по техническим причинам рассматривается отдельно: это число не является ни простым, ни произведением простых, хотя причины этого отделения неважны для нашего обсуждения. Например: 12 = 2 х 2 x 3; 9 = 3 x 3; 15 = 3 x 5. Есть ли другой способ записать число 12 как произведение простых чисел? Или вариант 2 х 2 х 3 единственно возможный? Ответ заключается в том, что, не учитывая таких тривиальных вариаций, как изменение порядка чисел или группировки 2 х 2 в виде 2², единственная форма записи 12 в виде произведения простых чисел — это 2 х х 2 х 3, и это верно для всех остальных натуральных чисел.

Разложение на простые числа всегда единственное, и эта единственность создает более сильную связь между числами и их простыми множителями. Благодаря этому свойства разложения (или факторизации) на простые числа становятся сильнее.

Эдуард Гейне задался вопросом, существует ли подобная связь между периодической функцией и элементарными волнами. Единственное ли это разложение, как это установлено для разложения на простые числа? В 1860-х годах Гейне удалось доказать, что некоторые типы периодических функций (например, не имеющие скачков, то есть непрерывные) можно разложить на элементарные волны единственным образом. Однако он не нашел общего доказательства для всех возможных ситуаций, а также не смог доказать единственности в случае, когда в каждом периоде у функции бесконечное (теоретически) число разрывов. Так что когда Кантор приехал в Галле в 1870 году, Гейне предложил ему поработать над этим вопросом: всегда ли периодическую функцию можно разложить единственным образом, даже если количество разрывов в каждом периоде может неограниченно расти?

Кантор принялся изучать проблему и в 1871 году получил первый результат: разложение периодической функции является единственным, даже когда количество разрывов неограниченно растет, если только эти скачки распределяются определенным образом. То есть для гарантии единственности точки появления скачков должны удовлетворять некоторым специфическим условиям. Но ученый столкнулся со сложностями при выражении этих требований точно и элегантно. Он явно имел интуитивную догадку о том, какие особенности хотел выразить, но у него не получалось ясно сформулировать это.

В 1872 и 1873 годах Кантор постепенно понял, что для четкой формулировки условий следует рассматривать точки разрывов как множества, бесконечные в действительности. Более того, требовалось сравнить между собой различные бесконечные множества, подобно тому как 250 лет назад Галилей сравнил натуральные числа с квадратными (это, в свою очередь, привело к отбрасыванию аристотелевского принципа о том, что целое больше его частей). Кантор также открыл, что такое сравнение приводит к выводу о существовании бесконечных множеств, больших, чем другие бесконечные множества.

Эти идеи были настолько революционными и так противоречили тысячелетиям исследований, что Кантору понадобилось целых десять лет на то, чтобы полностью принять их и признать: в математику необходимо ввести актуальную бесконечность. В конце концов в 1883 году он написал длинную статью под названием «Основы общего учения о многообразиях. Математически-философский опыт учения о бесконечном», в которой не только выступал за введение актуальной бесконечности, но и утверждал, что это абсолютно неизбежно. Кантор начал свою статью, почти прося прощения за это решение:

«Изложение моих исследований об изучении множеств достигло того пункта, где развитие его становится зависимым от расширения понятия целого действительного числа за существующие до сих пор границы, и оказывается, что расширение это совершается по такому направлению, в котором, насколько я знаю, никто до сих пор его не искал.

Это расширение понятия числа носит только принудительный характер, и без него я вряд ли смогу сделать свободно хотя бы малейший шаг вперед в учении о множествах; пусть в этом обстоятельстве увидят оправдание или, если необходимо, извинение того, что я ввожу в свое рассмотрение, по-видимому, чужеродные идеи».

Теория множеств, которую упоминает Кантор, была его способом обозначения изучения бесконечных совокупностей как отдельных объектов. Он предложил сделать эту теорию основой математики. Числа, операции с ними и все математические понятия могут быть определены, согласно Кантору, на базе понятий теории множеств.

Множество, согласно определению Кантора, это «собрание целиком объектов действительности или нашей мысли». Например, числа 1, 2, 3, 4, 5,... мы можем объединить в совокупность, которую назовем множеством натуральных чисел. Числа — это элементы, или члены этой совокупности, и множество становится отдельным объектом, доступным для изучения. Мы можем также задумать множество, образованное только числом один, или днями недели, или людьми, родившимися 20 июля 1899 года. Следовательно, теория множеств — это изучение взаимных свойств и отношений множеств, или совокупностей.

Теория [бесконечных] множеств — это область, в которой ничто не очевидно; истинные высказывания ее часто парадоксальны, а предполагаемые высказывания ложны.

1 2 3 4 5 6 7 8 9 10 ... 28
На этой странице вы можете бесплатно читать книгу У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro бесплатно.

Оставить комментарий