При таком повсеместном использовании статолитов в царстве животных весьма велик соблазн приписать камешкам в корнях растений похожие функции — указателей направления, низа и верха. Корни растут в ту сторону, которую указывают статолиты, а стебли и листья — в противоположную. Вероятно, так могло бы быть. Многое говорит в пользу этого утверждения. Но где же веские доказательства — не менее убедительные, чем история с «намагниченным» раком?
Стеклянная клетка
Уже более тридцати лет я лелею эту сокровенную мечту — заглянуть внутрь верхушки растущего корня и снять на камеру то, чем заняты камешки. В семидесятые годы прошлого века в одной детской передаче я довольно настойчиво пытался показать действующие статолиты. Внутри живой растительной клетки. Безуспешно. Для этого понадобились бы прозрачные корни, которые при этом должны быть абсолютно неповрежденными и способными к росту. Ко всему прочему необходим горизонтальный микроскоп, чтобы кончики корней без помех росли в направлении силы тяжести. Тогда я сдался, но мечта осталась: мне по-прежнему хотелось оказаться в растительной клетке, словно в кабине самолета, и понаблюдать, как корень описывает кривую роста, ориентируясь на статолиты, точно пилот на искусственный горизонт.
Теперь, спустя десятилетия, «Умные растения» подарили мне второй шанс. Я предпринимаю новую попытку и звоню в Боннский университет. Там находится Институт молекулярной физиологии и биотехнологии растений, а в нем существует отдел гравитационной биологии. Я осторожно объясняю, что ищу возможность снять на камеру статолиты в живой растительной клетке.
— Да, никаких проблем, мы вам это организуем, — отвечает мне глава отдела Маркус Браун, которого явно веселит мое изумление. — Для нас это совсем не проблема, обычные исследовательские будни. Так когда вы хотите приехать?
В душе я почти ликую. Вершина, с которой я сорвался несколько десятков лет назад, теперь готова мне покориться! И даже без всяких трудностей. Оказывается, моя мечта — всего-навсего исследовательские будни. Но вот что заглушает мое внутреннее ликование: если это так нетрудно, почему я сам не смог это сделать? В любом случае, прибыв в Бонн с камерами и оборудованием, я ожидаю очень многого. Каким образом ученые смогли добиться невозможного? Неужели им удалось заглянуть внутрь растущего корня, ведь он не стеклянный?..
Ответ лежит на илистом дне пруда, расположенного в Боннском ботаническом саду. Йенс Хауслаге и Николь Гройель, представители молодого поколения исследователей института, опускаются на колени у самой воды и, вытянув руки, пытаются достать до дна. Точнее, они стремятся раздобыть водоросли, которыми оно покрыто. Это самые обычные харовые водоросли, или «хара» (chara), как они называются по-научному. Хара напоминает хвощ, так как из ее стеблей через одинаковые промежутки тянутся целые группы отростков. Йенс и Николь набирают несколько горстей водорослей и набивают ими пивной бокал — исследовательский материал на ближайшие несколько дней готов.
Такая подготовка особенно не впечатляет. Речь идет о серьезном научном исследовании, а мы всего-навсего собираем зелень со дна пруда в Боннском ботаническом саду. То же самое можно было сделать двести лет назад. Ни капли экзотики. Обычные водоросли, а не редкая орхидея из какого-нибудь малоизученного уголка нашей планеты. Самое заурядное растение, которое, засучив рукава, можно достать из любого заросшего пруда. Почему же именно харовые водоросли?
Йенс объясняет: эти водоросли — настоящая находка для биологов, потому что в случае необходимости они образуют клетки длиной в несколько сантиметров.
— Сантиметров? — удивленно переспрашиваю я, так как обычно клетки растений микроскопически малы.
— Да-да, — подтверждает Йенс, — они образуют нитеобразную клетку толщиной всего одну тридцатую миллиметра, зато до трех сантиметров в длину.
Позднее я смог понаблюдать за такой клеткой в лаборатории. Она — своего рода аварийное оборудование на тот случай, если часть растения оторвется и уплывет куда-нибудь далеко.
Йенс окончательно входит в раж, рассказывая о стратегии выживания этих водорослей, у него даже глаза заблестели. Как только фрагмент стебля хары отнесет течением в другое место, из него, как из черенка, может вырасти целое новое растение. Первым делом, чтобы не уплыть дальше, оно должно как можно скорее закрепиться в почве. Для этого в течение всего лишь двадцати четырех часов водоросль запускает в речной грунт ту самую напоминающую корень длинную клетку. Она должна принять вертикальное положение, чтобы проникнуть как можно глубже. Это не настоящий корень, а скорее якорь — так называемый ризоид, предназначенный только для того, чтобы удержаться в грунте; он не способен добывать какие-либо питательные вещества.
Неудивительно, что клетка, демонстрируя чудеса роста, устремляется в глубь грунта, следуя указаниям статолитов. Удивление и радость биологов она вызывает потому, что дает возможность каждому, кому это интересно, увидеть все собственными глазами: огромная клетка полностью прозрачна. Точно стеклянная. С первого взгляда на нее понимаешь, что оторваться невозможно. Под микроскопом видно, как проворные потоки частиц прокладывают себе дорогу. Они делятся и огибают ядро клетки, точно это остров посреди речного простора. И постоянно возникает впечатление, что они очень торопятся, будто им нужно поскорее завершить какое-то срочное дело.
Особенно интересно то, что происходит ниже, на верхушке ризоида. Здесь перекатывается всего лишь десяток коричневатых статолитов. Если смотреть в микроскоп, они представляются круглыми и довольно большими, точно галька (кажется, они как раз уместятся на ладони), но в действительности статолиты в сотню раз меньше песчинки.
— Водоросли хара образуют свои статолиты из сульфата бария, — поясняет Йенс, — он гораздо плотнее клеточной жидкости, примерно в четыре раза.
Однако массивные камешки не лежат на месте, подобно гальке в русле реки. Почти прижавшись к верхушке ризоида, они раскачиваются и приплясывают, словно их сдерживает какая-то невидимая сеть.
— Так и есть, — объясняет Йенс, — статолиты не могут перекатываться сами по себе, камешки двигаются внутри эластичной сетки, состоящей из прядей молекул, и эта сетка охватила всю верхушку клетки.
Невероятно! Йенс совсем недолго объясняет мне поведение статолитов, однако кончик ризоида успевает протянуться через все поле зрения микроскопа и вырваться за его пределы. От такой скорости дух захватывает. Интересно, поворот он совершит столь же стремительно?