Г. к. впервые был разработан в СССР (1933).
Лит.: Соколов В. А., Юровский Ю. М., Теория и практика газового каротажа, М., 1961; Юровский Ю. М., Разрешающие способности газового каротажа, М., 1964.
Ю. М. Юровский.
Газовый конденсатор
Га'зовый конденса'тор, конденсатор с газообразным диэлектриком; к Г. к. относятся газонаполненные, воздушные и вакуумные конденсаторы. Применяются в электрических цепях, приборах и устройствах с напряжением от долей в до сотен кв, при частотах до сотен Мгц (см. Конденсатор электрический ).
Газовый лазер
Га'зовый ла'зер, лазер с газообразной активной средой. Трубка с активным газом помещается в оптический резонатор , состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным.
Испущенная в каком-либо месте трубки световая волна при распространении её через газ усиливается за счёт актов вынужденного испускания, порождающих лавину фотонов. Дойдя до полупрозрачного зеркала, волна частично проходит через него. Эта часть световой энергии излучается Г. л. вовне. Другая же часть отражается от зеркала и даёт начало новой лавине фотонов. Все фотоны идентичны по частоте, фазе и направлению распространения. Благодаря этому излучение лазера может обладать чрезвычайно большой монохроматичностью, мощностью и резкой направленностью (см. Лазер , Квантовая электроника ).
Первый Г. л. был создан в США в 1960 А. Джаваном. Существующие Г. л. работают в очень широком диапазоне длин волн — от ультрафиолетового излучения до далёкого инфракрасного излучения — как в импульсном, так и в непрерывном режиме. В табл. приведены некоторые данные о наиболее распространённых Г. л. непрерывного действия.
Из Г. л., работающих только в импульсном режиме, наибольший интерес представляют лазеры ультрафиолетового диапазона на ионах Ne (l = 0,2358 мкм и l = 0,3328 мкм ) и на молекулах N2 (l = 0,3371 мкм ). Азотный лазер обладает большой импульсной мощностью.
В излучении Г. л. наиболее отчётливо проявляются характерные свойства лазерного излучения — высокая направленность и монохроматичность. Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения (см. ниже) и переход к более высоким давлениям газа могут резко увеличить мощность Г. л. С помощью Г. л. возможно дальнейшее освоение далёкого инфракрасного диапазона, диапазонов ультрафиолетового и рентгеновского излучений. Открываются новые области применения Г. л., например в космических исследованиях.
Особенности газов как лазерных материалов. По сравнению с твёрдыми телами и жидкостями газы обладают существенно меньшей плотностью и более высокой однородностью. Поэтому световой луч в газе практически не искажается, не рассеивается и не испытывает потерь энергии. В таких лазерах сравнительно просто возбудить только один тип электромагнитных волн (одну моду). В результате направленность лазерного излучения резко увеличивается, достигая предела, обусловленного дифракцией света . Расходимость светового луча Г. л. в области видимого света составляет 10-5 — 10-4 рад, а в инфракрасной области 10-4 — 10-3 рад.
В отличие от твёрдых тел и жидкостей, составляющие газ частицы (атомы, молекулы или ионы) взаимодействуют друг с другом только при соударениях в процессе теплового движения. Это взаимодействие слабо влияет на расположение уровней энергии частиц. Поэтому энергетический спектр газа соответствует уровням энергии отдельных частиц. Спектральные линии, соответствующие переходам частиц с одного уровня энергии на другой, в газе уширены незначительно. Узость спектральных линий в газе приводит к тому, что в линию попадает мало мод резонатора.
Так как газ практически не влияет на распространение излучения в резонаторе, стабильность частоты излучения Г. л. зависит главным образом от неподвижности зеркал и всей конструкции резонатора. Это приводит к чрезвычайно высокой стабильности частоты излучения Г. л. Частота w излучения Г. л. воспроизводится с точностью до 10-11 , а относительная стабильность частоты
Малая плотность газов препятствует получению высокой концентрации возбуждённых частиц. Поэтому плотность генерируемой энергии у Г. л. существенно ниже, чем у твердотельных лазеров.
Создание активной газовой среды в газоразрядных лазерах. Активной средой Г. л. является совокупность возбуждённых частиц газа (атомов, молекул, ионов), обладающих инверсией населённостей . Это означает, что число частиц, «населяющих» более высокие уровни энергии, больше, чем число частиц, находящихся на более низких энергетических уровнях. В обычных условиях теплового равновесия имеет место обратная картина — населённость низших уровней больше, чем более высоких (см. Больцмана статистика ). В случае инверсии населённостей акты вынужденного испускания фотонов с энергией hn = Ев - Ен , сопровождающие вынужденный переход частиц с верхнего уровня Ев на нижний Ен, преобладают над актами поглощения этих фотонов. В результате этого активный газ может генерировать электромагнитное излучение частоты
или с длиной волны
Одна из особенностей газа (или смеси газов) — многообразие физических процессов, приводящих к его возбуждению и созданию в нём инверсии населённостей. Возбуждение активной среды излучением газоразрядных ламп, нашедшее широкое применение в твердотельных и жидкостных лазерах, мало эффективно для получения инверсии населённостей в Г. л., т. к. газы обладают узкими линиями поглощения, а лампы излучают свет в широком интервале длин волн. В результате может быть использована только ничтожная часть мощности источника накачки (кпд мал). В подавляющем большинстве Г. л. инверсия населённостей создаётся в электрическом разряде (газоразрядные лазеры). Электроны, образующиеся в разряде, при столкновениях с частицами газа (электронный удар) возбуждают их, переводя на более высокие уровни энергии. Если время жизни частиц на верхнем уровне энергии больше, чем на нижнем, то в газе создаётся устойчивая инверсия населённостей. Возбуждение атомов и молекул электронным ударом является наиболее разработанным методом получения инверсии населённостей в газах. Метод электронного удара применим для возбуждения Г. л. как в непрерывном, так и в импульсном режимах.
Возбуждение электронным ударом удачно сочетается с др. механизмом возбуждения — передачей энергии, необходимой для возбуждения частиц одного сорта от частиц др. сорта при неупругих соударениях (резонансная передача возбуждения). Такая передача весьма эффективна при совпадении уровней энергии у частиц разного сорта (рис. 1 ).
В этих случаях создание активной среды происходит в два этапа: сначала электроны возбуждают частицы вспомогательного газа, затем эти частицы в процессе неупругих соударений с частицами рабочего газа передают им энергию. В результате этого населяется верхний лазерный уровень. Чтобы хорошо накапливалась энергия, верхний уровень энергии вспомогательного газа должен обладать большим собственным временем жизни. Именно по такой схеме осуществляется инверсия населённостей в гелий-неоновом лазере.
Гелий-неоновый лазер (А. Джаван, США, 1960). В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона Ne. Атомы гелия Не служат для передачи энергии возбуждения. В электрическом разряде часть атомов Ne переходит с основного уровня e1 на возбуждённый верхний уровень энергии E3 . Но в чистом Ne время жизни на уровне E3 мало, атомы быстро «соскакивают» с него на уровни E1 и E2 , что препятствует созданию достаточно высокой инверсии населённостей для пары уровней E2 и E3 . Примесь Не существенно меняет ситуацию. Первый возбуждённый уровень Не совпадает с верхним уровнем E3 неона. Поэтому при столкновении возбуждённых электронным ударом атомов Не с невозбуждёнными атомами Ne (с энергией E1 ) происходит передача возбуждения, в результате которой атомы Ne будут возбуждены, а атомы Не вернутся в основное состояние. При достаточно большом количестве атомов Не можно добиться преимущественного заселения уровня неона. Этому же способствует опустошение уровня E2 неона, происходящее при соударениях атомов со стенками газоразрядной трубки. Для эффективного опустошения уровня E2 диаметр трубки должен быть достаточно мал. Однако малый диаметр трубки ограничивает количество Ne и, следовательно, мощность генерации, Оптимальным, с точки зрения максимальной мощности генерации, является диаметр около 7 мм. Т. о., в результате специального подбора количеств (парциальных давлений ) Ne и Не и при правильном выборе диаметра газоразрядной трубки устанавливается стационарная инверсия населённостей уровней энергии E2 и E3 неона.