Рейтинговые книги
Читем онлайн Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд - Рудольф Киппенхан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 39 40 41 42 43 44 45 46 47 ... 57

Итак, в двойной системе, к которой принадлежит Геркулес Х-1, за рентгеновское излучение ответственна нейтронная звезда. Когда-то в этой системе произошел взрыв сверхновой, и первоначально более массивная компонента оставила после себя нейтронную звезду. Но это было очень давно: образовавшееся при взрыве облако давно рассеялось. Сегодня вещество со звезды, которая была менее массивной компонентой и пока еще находится близко к главной последовательности, падает на нейтронную звезду. Когда оно, направляемое магнитными полями, падает в области магнитных полюсов, возникает рентгеновское излучение. При этом излучение, создаваемое при переходе с одной орбиты на другую теми электронами, которые в магнитном поле закружились по крошечным круговым траекториям, имеет пик на 58 кэВ.

После «Ухуру» были запущены другие рентгеновские спутники, проводилось множество экспериментов на аэростатах. Одна из сложностей в рентгеновской астрономии состоит в том, что до сих пор не удалось создать рентгеновскую фотографическую камеру. Рентгеновские лучи невозможно фокусировать с помощью линз. Зеркала тоже не отражают рентгеновские лучи под большими углами: для использования зеркала нужно, чтобы рентгеновские лучи приходили под очень малым углом к поверхности зеркала. Пользуясь этим свойством, физик Ганс Вольтер (1911–1978), работавший тогда в Киле, придумал в 1952 году способ рентгеновской фотографии. С ноября 1978 года на орбите работает запущенная NASA Эйнштейновская обсерватория; на ней установлен рентгеновский телескоп диаметром 57 см. Предполагают, что имеется до миллиона рентгеновских источников, которые могут быть зарегистрированы этим прибором. Первый немецкий «телескоп Вольтера» диаметром 32 см был успешно запущен на ракете в феврале 1979 года. В ФРГ запланировано изготовление 80-сантиметрового рентгеновского телескопа.

Рентгеновские ливни

В последние годы обнаружен еще один тип рентгеновских источников, которые чаще всего, по-видимому, встречаются в шаровых скоплениях. Эти источники посылают рентгеновские импульсы в виде «ливней», каждый из которых, продолжаясь порой всего несколько секунд, обладает такой же энергией, какую наше Солнце излучает за целую неделю. Эти ливни не обнаруживают регулярности источника Геркулес Х-1; вращающееся тело, задающее ритм импульсов, здесь, по-видимому, отсутствует (рис. 10.14). Тем не менее в приходе импульсов наблюдается некая закономерность. Из шарового скопления в созвездии Скорпиона мы принимаем в рентгеновских ливнях импульсы с периодичностью около 40 секунд, которая, однако, выдерживается не слишком строго: после сильного импульса «молчание» длится дольше, чем после слабого. Вероятно, и у этих источников вещество падает на компактный объект, однако механизм, благодаря которому высвобождение энергии происходит не постоянно, а в виде ливней, отличается от механизма, обеспечивающего пульсацию источника Геркулес Х-1.

Рис. 10. 14. Сигналы источника МХВ 1730-335 исходят из шарового скопления, на которое обратили внимание после открытия здесь рентгеновского источника. Импульсы идут сериями по 10–20 отдельных вспышек. Интенсивность вспышек неодинаковая. После особенно сильных выбросов источнику требуется передышка, прежде чем он начнет новую серию импульсов.

Шаровые скопления являются старыми, как мы уже знаем из гл. 2. В них давно уже не рождаются звезды. Было очень заманчиво считать эти скопления безжизненными образованиями. Однако рентгеновские ливни, которые исходят из них, показывают, что в них еще продолжается жизнь.

Во Вселенной может существовать множество нейтронных звезд, о которых мы ничего не знаем. Вероятно, все они являются останками сверхновых, но не исключено, что в природе существуют и иные, неизвестные еще нам пути их возникновения. Нам и не удалось бы ничего узнать о них, если бы на них не падало вещество с их звездных спутников. Только тогда они проявляют себя, посылая к нам рентгеновское излучение.

В 1960 году во время одной из лекций я попросил своих слушателей представить, что существует прибор, который преобразует все приходящее из Вселенной к нам излучение в слышимый звук. Наряду с ровным шумом звезд и треском солнечных помех мы бы услышали шум известных тогда радиосточников, нарастающий и затихающий сообразно с восходом и заходом этих источников на горизонте при вращении Земли. Тогда мы знали лишь о довольно длинноволновом космическом излучении. Сегодня, двадцать лет спустя, мне приходится внести поправки в эту картину. Кроме известных тогда источников, во «вселенский хор» вольются и новые голоса: на фоне ровного шума мы услышим тиканье пульсаров, низкое гудение пульсара в Крабовидной туманности, импульсы которого наше ухо не могло бы уже разделить, пулеметные очереди рентгеновских источников — например, источника МХВ 1730-335, который из шарового скопления посылает к нам мощные импульсы, причем после десятка импульсов с интервалом 10–20 секунд следует перерыв на несколько минут, а потом вновь идет серия импульсов. «Шум Вселенной» — это не только ровное шипение: это и щелчки, и барабанная дробь, и жужжание, и треск. И виновницами всего этого трезвона являются, скорее всего, нейтронные звезды.

Говорят ли нам что-нибудь пульсары и рентгеновские источники о конечных стадиях эволюции звезд? Уверены ли мы, что все звезды под конец превращаются в нейтронные звезды или белые карлики? Важное свойство этих двух типов звезд позволяет думать, что существует еще и третья возможность.

Глава 11

Конец звезды

«Бархатно-черный круглый предмет неподвижно и свободно парил в пространстве. Предмет, собственно, не был похож на шар, а производил скорее впечатление зияющей дыры. И был он не чем иным, как дырой… Тут же поднялся ветер, который становился все сильнее и сильнее, поскольку воздух из комнаты засасывался в шар. Обрывки бумаги, перчатки, дамские вуали все летело туда. Да, и когда один из полицейских ударил зловещую дыру саблей, клинок исчез, будто расплавившись».

Густав Мейринк, «Черный шар», 1913

Пульсары и рентгеновские источники подтверждают, что в природе существуют нейтронные звезды. Одна из таких звезд осталась в Крабовидной туманности после взрыва Сверхновой. Но что привело к этому взрыву в 1054 году? Рано или поздно взрыв Сверхновой должен произойти и в нашей Галактике, так сказать, у нас перед глазами.[26] Тогда бы мы узнали, что же там взрывается; на старых снимках неба мы нашли бы ту звезду, на месте которой в облаке останков крутится, как волчок, крошечная нейтронная звезда.

Пока что, однако, нам приходится лишь строить догадки. Изучая компьютерные модели звезд на поздней стадии эволюции, мы можем попытаться ответить на вопрос, каким образом звезда приходит к катастрофе.

«Железная катастрофа» массивных звезд

У массивных звезд, масса которых превышает солнечную больше чем в десять раз, эволюция протекает очень быстро. Водород в них расходуется уже через несколько миллионов лет. Тогда начинает гореть гелий, превращаясь в углерод, а вскоре и атомы углерода начинают превращаться в атомы с более высокими атомными номерами. Во всех этих ядерных реакциях высвобождается энергия, однако ядерные процессы становятся все менее эффективными. Чтобы излучение звезды поддерживалось на одном и том же уровне, реакции должны протекать все быстрее и быстрее. Быстро сменяя друг друга, образуются все более тяжелые атомы. Может ли так продолжаться бесконечно?

Оказывается, в природе превращения элементов заканчиваются на железе. Мы уже видели, что чем тяжелее элемент, получающийся в результате термоядерной реакции, тем ниже выделяемая энергия. Когда превращения доходят до железа, ядерный реактор звезды останавливается. При слиянии ядра железа с ядрами других элементов, имеющихся в звезде, энергия уже не выделяется: наоборот, для этого требуется дополнительная энергия. И напротив, чтобы расколоть ядро железа, требуется затратить энергию.

Причина этого заключается в одном из свойств атомных ядер. Ядра тяжелых элементов (например, урана) при делении выделяют энергию, а в результате деления появляются ядра, масса которых близка к атомной массе более легкого железа. При соединении легких элементов выделяется энергия, и в результате получаются ядра, масса которых ближе к массе тяжелого железа. Только из ядер железа нельзя получить энергию ни путем деления, ни путем синтеза.

Что же произойдет, когда в нашей массивной звезде процессы термоядерного синтеза зайдут так далеко, что в центре звезды образуется сферическая область, состоящая целиком из газообразного железа (рис. 11.1, а)? Ядра железа могут захватывать электроны из окружающего газа. При этом центральная область звезды сокращается в объеме. Дело в том, что равновесие здесь поддерживается противодействием силы тяжести и газового давления. Газовое давление обусловлено в основном электронами. Когда электроны поглощаются атомными ядрами, сила тяжести берет верх. В конце концов центральная область звезды, состоящая из газообразного железа, «схлопывается». Считают, что этот процесс начинается, когда масса центрального железного ядра звезды достигает 1,5 солнечной. Сила тяжести так плотно прижимает друг к другу все составные «кирпичики» атомных ядер, что в конце концов все протоны и электроны объединяются в нейтроны, и все вещество в центре звезды оказывается состоящим только из нейтронов. Плотное газообразное железное ядро звезды превращается в нейтронную звезду. При этом превращении выделяется невообразимое количество энергии, которое, по всей видимости, разметает в пространство внешнюю оболочку звезды. Звезда взрывается, а нейтронное ядро остается в облаке разлетающихся с огромной скоростью останков. Жизнь звезды завершилась взрывом сверхновой.

1 ... 39 40 41 42 43 44 45 46 47 ... 57
На этой странице вы можете бесплатно читать книгу Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд - Рудольф Киппенхан бесплатно.
Похожие на Рудольф Киппенхан 100 миллиардов солнц: Рождение, жизнь и смерть звезд - Рудольф Киппенхан книги

Оставить комментарий