Раздражение электричеством восстанавливает память. После процедуры «напоминания» мышонок так, за здорово живешь в какую-то дырку не полезет. Значит, память хранила нужную информацию, но почему-то мышка не могла ею воспользоваться.
Есть другой способ вернуть память, уничтоженную электрошоком. Некоторые вещества способны возродить воспоминания, как проявитель делает видимым изображение, скрытое на фотопластинке. Особенно хорошо действует стрихнин, введенный до электрошока. Даже спустя три часа он еще способен оживить следы памяти. Только в одном случае стрихнин окажется бессильным, если электрошок нанести в течение минуты после обучения. Тут уже ничто не поможет.
Опыты по восстановлению памяти породили новые представления. Скорее всего фиксация информации проходит два этапа. Во время первого, очень короткого, исчисляемого всего несколькими десятками секунд, возникает матрица, отпечаток с информации, достигшей мозга. Электрошок, нанесенный тотчас после процедуры обучения, помешает ее возникновению, но бессилен ее разрушить, если она уже образовалась. Зато, воздействуя на вторую фазу фиксации, он сделает матрицу неактивной.
В этом случае память зафиксирует и будет хранить массу важных для организма вещей, но не сможет ими воспользоваться. Знания будут лежать в мозгу мертвым грузом. Стрихнин и процедуры напоминания, видимо, создают аппарат, позволяющий пользоваться матрицей.
Гораздо труднее для изучения кратковременная память, хотя иногда простые наблюдения за животными позволяют собрать уникальный материал. В числе первых советских физиологов, рискнувших обнародовать свои наблюдения над памятью животных, был В.Я. Кряжев. Выступая на одном из совещаний, он рассказывал, как однажды ему довелось проникнуть в глубины оперативной памяти вороны.
Дело было летом на даче. В полдневный зной ворона обнаружила на открытой веранде тарелку с куриными яйцами. Оглядевшись по сторонам и убедившись, что никого вблизи нет, осторожная птица украла яйцо. Через 20 минут она прилетела за другим, затем за третьим.
Кряжева заинтересовало: запомнит ли ворона, унеся последнее яйцо, что больше на веранде поживиться нечем. Когда оно было украдено (как выяснилось из вопросов, заданных докладчику, яйца принадлежали соседу), экспериментатор удвоил внимание. Похитительница не вернулась. Оперативная память вороны в пределах 20 минут работала идеально. Природа щедра на подобные эксперименты, но, чтобы подсмотреть их, необходимо счастливое стечение обстоятельств.
Когда хотят изучать кратковременную память, поступают следующим образом: на глазах у подопытного животного в одну из двух-пяти кормушек кладут корм. Кормушки устроены так, что животное не может видеть корм и ощущать его запах. Экспериментатор не дает животному тотчас же съесть пищу. Только выждав известное время, животному дают доступ к кормушкам. Постепенно увеличивая интервал, устанавливают длительность краткосрочной памяти. Она оказалась не такой уж короткой: собаки и обезьяны способны помнить о корме несколько дней.
Этот эксперимент для высших животных достаточно прост. Обычно его стремятся усложнить. Корм кладут в кормушки скрытно от животного. На заряженную кормушку указывает специальный раздражитель – загорающаяся лампочка или звук звонка, расположенные над ней.
Чтобы узнать, как долго сохраняются воспоминания о внешних раздражителях, животному предъявляют друг за другом два звука или две картинки. Если они совершенно одинаковы, то животное, нажав на рычаг кормушки, сможет достать корм. Когда раздражители разные, кормушка окажется запертой. Увеличивая интервал между действием раздражителей, удается установить, сколько времени животное может помнить первый из них достаточно хорошо, чтобы сравнить его со вторым.
Чтобы узнать, как долго животное помнит совершенное им действие, применяют Т-образный лабиринт. Крыса получает корм только в том случае, если бегает по очереди в правый и левый рукав лабиринта. Когда интервал между очередными прогулками по лабиринту достаточно велик, животное забывает, в какой последовательности бегало предыдущий раз, и начинает путаться.
Краткосрочная память – необходимое условие для образования долгосрочной, однако не всякая краткосрочная память переходит в долгосрочную. Вводя животным специальные препараты, угнетающие в мозгу синтез белков, удается затормозить развитие долгосрочной памяти. У золотых рыбок и крыс в течение одного опыта легко вырабатывался условный рефлекс. Однако уже через несколько часов он разрушался. Можно три-пять дней заново вырабатывать рефлекс, а он за ночь каждый раз успеет разрушиться. Оперативная память исправна, а механизм передачи информации в долгосрочную память нарушен.
У животных, которым введены вещества, нарушающие в мозгу синтез белка, условный рефлекс удается выработать, только если между отдельными сочетаниями раздражителей будет небольшой интервал, две-пять минут. При увеличении интервала до 30–40 минут рефлекс не образуется. Кратковременная память о предыдущем сочетании успеет разрушиться раньше, чем произойдет очередное сочетание. Можно затратить несколько суток, сделать 50–100 сочетаний, но так и не добиться образования условного рефлекса.
Пилюли из вашего дедушки
Биохимическая теория памяти получила значительное развитие в последние десятилетия. Этому предшествовал длительный период накопления знаний о биохимических превращениях в мозговом веществе. Развитие учения об условных рефлексах вызвало интерес к биохимическим процессам, сопровождающим работу мозга. Неудивительно, что пионерами в этой области стали наши отечественные ученые, воспитанники павловской физиологической школы: А.В. Палладин, Е.М. Крепе, Г.Е. Владимиров.
В то время не существовало таких точных методов, чтобы можно было заметить биохимические изменения, вызванные однократным условным рефлексом. Они чрезвычайно малы, а время, необходимое, чтобы убить животное, извлечь мозг и подготовить к химическому анализу, столь велико, что дальнейший ход биохимических реакций умирающего мозга должен был полностью их стереть.
Вести в этом направлении поиски казалось бессмысленным. Поэтому первые исследования выполнили на животных, которых в течение длительного времени подвергали определенным воздействиям светом или звуком, заставляли здорово побегать или вволю выспаться. Предполагалось, что эти процедуры вызовут серьезный биохимический сдвиг, который не сотрется за время подготовки мозгового вещества к анализу.
Позже Владимиров внес в методику существенное усовершенствование. Он вырабатывал у крыс специальный условный рефлекс: по сигналу животное должно было выпрыгнуть из камеры через специальное отверстие наружу, чтобы не получить удара электрическим током. Когда тренировка условного рефлекса достигала нужного уровня, под отверстие подставляли сосуд с жидким воздухом, куда и попадала крыса.
Животное мгновенно замораживалось и охлаждалось почти до абсолютного нуля. При таких низких температурах химические реакции не идут. В руках экспериментатора оказывался мозг в том состоянии, какое он имел в момент осуществления условного рефлекса.
Шведский гистохимик X. Хиден – большой энтузиаст изучения памяти. Еще 30 лет назад ему удалось установить, что в процессе возбуждения в нервных клетках усиливается воспроизводство и расход РНК и синтез белка. В его опытах крысята, чтобы добраться до пищи, должны были пройти, балансируя по проволоке, изрядное расстояние. Конечно, сначала они просто падали, не одолев и половины пути.
Говорят, голод не тетка. За четыре дня крысенок мог научиться тому, на что цирковые артисты затрачивают месяцы и годы. На пятый день четвероногие эквилибристы успевали за один час 15 раз проделать путь от старта до финиша. Тогда их убивали и, найдя в продолговатом мозгу центр равновесия, выделяли из него нервные клетки, получившие название клеток Дейтерса.
Оказалось, что в каждой из них было около 750 пикограмм РНК. У крысиных братьев, все последние 5 дней сидевших в тесной маленькой клетке, было всего 680 пикограмм, то есть почти на 10 процентов меньше. Мало того, сама РНК у «акробатов» была иная, чем у контрольных животных, она содержала аденина на 11 процентов больше, чем следует, и на столько же процентов меньше урацила.
Похожие результаты были получены на взрослых крысах. Эти зверьки во время еды держат корм в лапах. Среди крыс, как и среди людей, встречаются правши и левши. Хиден заставил праворуких крыс пользоваться во время еды левой лапой. Когда они этому научились, исследовали нейроны пятого и шестого слоев двигательной коры левого «необученного» и правого «обученного» полушарий, управлявших движением лап. В «обученных» клетках оказалось РНК на 5 пикограмм больше. В них было больше аденина, гуанина и урацила и меньше цитозина. У ничему не обучавшихся крыс никаких изменений в составе РНК не было.