Рейтинговые книги
Читем онлайн Принцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 41 42 43 44 45 46 47 48 49 ... 95
на волне (напряжения). Если серферу нужно ускориться, он может подняться ближе к вершине волны, где ее изгиб круче; если ему нужно замедлиться, он может спуститься к нижней части волны. При правильной синхронизации по отношению к волне напряжения, создаваемой радиочастотными полями, передние (более быстрые) частицы встречают более низкое напряжение, чем задние (более медленные), и остаются сгруппированными.

Это позволит не только сгруппировать и ускорить пучки частиц, но и, как утверждал Макмиллан, преодолеть любые потери энергии на излучение. Похоже на серфинг при встречном ветре: всем серферам нужно немного приблизиться к вершине волны, чтобы продолжать движение, но они могут это сделать при условии, что волна достаточно высока[164]. Синхротрон сможет превысить энергетический предел в 500 МэВ, предсказанный Иваненко и Померанчуком.

Лоуренсу идея казалась абсолютно привлекательной, поскольку синхротрон может достигать почти неограниченной энергии, в отличие от изобретенного им циклотрона. Он был полон решимости построить синхротрон, чтобы достичь высоких энергий и наконец оставить все то железо, которое нужно для циклотронов. Однако, в типичном для Лоуренса стиле, он еще не построил новый ускоритель: он просто всем о нем рассказывал, пока они с Макмилланом разрабатывали план. Для физиков GE его семинар прояснил сразу две вещи: во-первых, актуальность бетатрона может оказаться еще короче, чем они себе представляли – синхротрон очень быстро выйдет на первый план в ускорении электронов; во-вторых, они могли бы построить небольшой синхротрон до того, как Лоуренс построит свой, чтобы первыми в мире доказать его значимость.

Физики из GE сразу же получили разрешение на создание синхротрона с энергией 70 МэВ и приступили к его проектированию. Сам магнит весил 8 тонн и имел 6-сантиметровый зазор посередине для круглого «пончика» диаметром 70 см, через который проходил луч[165]. Они разработали хитроумный силовой контур, который передавал энергию по кругу для увеличения и уменьшения магнитного поля в установленное время, что позволяло управлять частицами. Между тем Блюитт, который ушел из GE, оставил им некоторые расчеты, полученные от уважаемого теоретика Джулиана Швингера, где было несколько дополнительных сведений об излучении, предсказанном Иваненко и Померанчуком.

Позже Швингер разделит Нобелевскую премию с Ричардом Фейнманом и Синъитиро Томонагой за развитие квантовой электродинамики (КЭД) в конце 1940-х годов. Расчеты Швингера гласили, что излучение, испускаемое по круговой траектории, не будет выделяться во всех направлениях: оно будет образовывать плотный луч, направленный вперед вдоль траектории частицы. Он предсказал, что частота излучения будет смещаться выше по мере увеличения энергии электронов. Наконец, он отметил, что при энергиях, с которыми работала команда GE, излучение должно выходить за пределы радиочастотного диапазона, вплоть до видимых частот.

Синхротрон, построенный физиками из GE, начал работать в октябре 1946 года[166], но вовсе не так гладко, как все надеялись. Компоненты постоянно выходили из строя, их приходилось заменять, но ученые продолжали работу, и в апреле 1947 года все шло довольно хорошо, за исключением одной проблемы: в машине замечалось искрение. Техника Флойда Хабера послали понаблюдать за синхротроном во время его работы, чтобы понять, в чем проблема.

Стоять рядом с такой машиной, когда она работает, довольно опасно, поэтому Хабер установил большое зеркало размером 1,8 × 0,9 м, чтобы наблюдать за машиной, а сам при этом надежно прятался за углом толстой бетонной стены. Когда ученые разогнали машину до пределов ее возможностей, Хабер крикнул, что видит искрение, и велел им выключить ее. Обычно, если происходит искрение, уровень вакуума – давление в «пончике» – быстро меняется, но не в этом случае: уровень вакуума оставался стабильным. Один из физиков, Роберт Ленгмюр, тоже пришел взглянуть, и все вместе они наблюдали маленькое, очень яркое голубоватое пятно, исходящее от синхротрона.

Ленгмюр сразу понял, что он видит. Он попросил остановить ускорение луча – и свет исчез. Это, должно быть, и есть то самое «излучение Швингера». Пораженные тем, что их электронный луч испускает видимый свет, ученые решили проверить предположение о том, что цвет света связан с энергией частицы. Снизив энергию, они наблюдали – должно быть, со смесью удовлетворения и недоверия, – как пятно света меняло цвет с синего на желтый, а затем на красный, пока не исчезло полностью. Все это, как позже вспоминал один из членов команды, заняло около 30 минут[167]. По счастливой случайности, новая вакуумная камера была сделана из стекла, поэтому они могли видеть свет, исходящий от циркулирующих электронов. Этот же эффект ускользнул от них тремя годами ранее при работе с бетатроном, потому что металлическая камера блокировала свет. Это был один из тех редких моментов случайного открытия, которое впоследствии окажет большое влияние.

Свет, излучаемый таким образом, называется синхротронным излучением и обладает очень специфическими свойствами. Он может быть невероятно интенсивным, когерентным (больше похож на лазер, чем на лампочку) и охватывать весь электромагнитный спектр, от рентгеновских лучей через видимый свет до инфракрасного, в зависимости от магнитного поля и энергии электронов. Свет поляризован, то есть все колебания световых волн происходят в одном направлении. Свет может поляризоваться по-разному, в том числе когда он отражается от воды или капота автомобиля, которые поляризуют его в основном в горизонтальном направлении. Вот почему поляризованные линзы в солнцезащитных очках блокируют блики, пропуская только вертикальные световые волны[168]. Синхротронный свет поляризуется в направлении, связанном с изгибом электронов: в случае с лучом, циркулирующим в ускорителе, он поляризуется горизонтально. Его свойства настолько уникальны, что при должных изменениях вы сможете точно определить, когда он возникает: если вы измеряете свет с правильными свойствами, то можете сделать вывод, что он почти наверняка исходит от электронов, чьи траектории изгибаются в магнитных полях.

Это открытие стало ключевым в разгадке мучающего астрономов вопроса об источнике радиоизлучения в космосе. Млечный Путь, пульсары и многие другие объекты – не просто шары из газа и пыли: у них есть магнитные поля. Когда заряженные частицы искривляются в этих полях, они испускают синхротронное излучение точно так же, как в ускорителе, освещая Вселенную, обычно в спектре радиоволн. Астрономы могут проверить, поляризовано ли излучение, и таким образом определить магнитную структуру – расположение и силу магнитных полей – объектов в космосе.

По мере развития радиоастрономии в 1950–1960-х годах выяснилось, что магнитные поля встречаются гораздо чаще, чем предполагалось ранее. Один из впечатляющих примеров – Крабовидная туманность в созвездии Тельца, остатки разрушительной сверхновой, наблюдавшейся в 1054 году н. э., у которой, как оказалось, есть энергетическое облако электронов, вращающихся по силовым линиям магнитного поля и управляемых пульсаром в ее центре. Теперь мы знаем, что все звезды, галактики, нейтронные звезды и сверхновые

1 ... 41 42 43 44 45 46 47 48 49 ... 95
На этой странице вы можете бесплатно читать книгу Принцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи бесплатно.
Похожие на Принцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи книги

Оставить комментарий