Для того чтобы понять, какую досаду испытываем мы, физики, представим себе на минуту, как физики XIX в. отреагировали бы на получение в подарок портативного компьютера. Нажимать кнопки они научились бы без труда, освоили бы видеоигры и просмотр обучающих программ. Знакомые лишь с техникой столетней давности, ученые восхищались бы поразительными вычислительными способностями компьютера. В его памяти с легкостью можно было бы хранить все накопленные за столетие знания. Вскоре ученые научились бы показывать математические «фокусы», изумляя своих коллег. Но если бы они попытались вскрыть компьютер и посмотреть, что находится внутри, то пришли бы в ужас. Транзисторы и микропроцессоры оказались бы далеко за пределами их понимания. Их опыт не был связан ни с чем подобным. Принцип действия такой техники выходил бы за пределы их познаний. Они могли бы только тупо глазеть на замысловатые схемы компьютера, не имея ни малейшего представления о том, как они работают и что все это означает.
Раздражение у этих ученых вызывал бы сам факт существования компьютера, а также то, что он стоит прямо перед ними, но их система представлений не позволяет объяснить это явление. Так и теория струн выглядит физикой XXI в. случайно открытой в XX в. Струнная теория поля тоже вмещает все физические знания. Приложив некоторые усилия, мы научимся «нажимать кнопки», вызывая теорию супергравитации, теорию Калуцы-Клейна и Стандартную модель. Но мы не сможем объяснить, почему все это работает. Струнная теория поля существует, но словно дразнит нас, поскольку нашего интеллекта недостаточно для ее решения.
Проблема в том, что если физика XXI в. попала в XX в. случайно, то математика XXI в. вообще еще не изобретена. Видимо, нам придется дожидаться математики XXI в., чтобы добиться хоть какого-нибудь прогресса. Или же нынешнему поколению физиков придется изобрести математику XXI в. своими силами.
Почему измерений десять?
Одна из самых непостижимых и до сих пор неразгаданных загадок теории струн — почему она определена только для 10 и 26 измерений. Если бы теория была трехмерной, она не могла бы хоть сколько-нибудь рациональным образом объединять известные законы физики. Таким образом, главной особенностью этой теории является геометрия высших измерений.
Выполняя расчеты для распада и соединения струн в N-мерном пространстве, мы постоянно обнаруживаем новые бессмысленные компоненты, уничтожающие удивительные свойства теории. К счастью, эти нежелательные компоненты, по-видимому, умножаются на (N — 10). Следовательно, чтобы устранить возникающие аномалии, нам не остается ничего другого, кроме как принять N равным 10. В сущности, теория струн — единственная известная квантовая теория, требующая, чтобы количество измерений пространства-времени выражалось определенным числом.
К сожалению, в настоящее время специалисты по теории струн не в состоянии объяснить, почему выбрано именно десять измерений. Ответ скрыт в глубинах математики, в области так называемых модулярных функций. Оперируя петлевыми диаграммами КСВ, созданными взаимодействующими струнами, мы сталкиваемся со странными модулярными функциями, где число 10 возникает в неожиданных местах. Модулярные функции так же загадочны, как человек, который исследовал их, — мистик с Востока. Если мы постараемся понять труды этого индийского гения, то, возможно, поймем, почему мы живем в нашей нынешней Вселенной.
Тайна модулярных функций
Сриниваса (Шриниваса) Рамануджан — одна из самых удивительных личностей в мире математики, а может быть, и в истории науки в целом. Его сравнивали со вспышкой сверхновой звезды, которая освещала самые темные и потаенные области математики — до тех пор, пока в возрасте 33 лет Рамануджан не умер от туберкулеза, как и Риман в свое время. Работая в полной изоляции от основных направлений и ведущих специалистов в его области, он сумел пройти столетний путь западной математики самостоятельно. Трагедия в том, что его труды большей частью представляют собой бесполезные повторы всем известных математических открытий. В записях Рамануджана повсюду среди туманных формул рассеяны модулярные функции — одно из самых странных математических явлений. Они неоднократно появляются в наиболее удаленных друг от друга и никак не связанных между собой направлениях математики. Одна из функций, упорно возникающих в модулярной теории, в настоящее время носит название функции Рамануджана. Эта причудливая функция содержит элемент, возведенный в двадцать четвертую степень.
В работах Рамануджана число 24 фигурирует постоянно. Такие числа математики называют «магическими»: они постоянно появляются там, где их совсем не ждешь, по причинам, которых никто не понимает. Так и функция Рамануджана волшебным образом возникла в теории струн. Число 24, фигурирующее в функции Рамануджана, так же является источником удивительных сокращений в теории струн. В этой теории все 24 режима функции Рамануджана соответствуют физическим колебаниям струны. Всякий раз, когда струна совершает сложные перемещения в пространстве-времени, разделяясь и восстанавливаясь, необходимо соответствие большому количеству чрезвычайно сложных математических тождеств. Эти тождества и были открыты Рамануджаном. (Поскольку физики добавляют еще два измерения, вычисляя общее количество колебаний, фигурирующих в релятивистской теории, это означает, что пространство-время должно иметь 24 + 2 = 26 пространственно-временных измерений[84].)
Когда функция Рамануджана представлена в обобщенном виде, число 24 заменяется числом 8. Таким образом, критическое число для суперструн — 8 + 2, или 10. Отсюда и вытекает десятое измерение. Струна колеблется в десяти измерениях потому, что ей необходимы обобщенные функции Рамануджана, чтобы сохранять самосогласованность. Другими словами, физики не имеют ни малейшего представления о том, почему № и 26 измерений возникли как измерения струны. Создается впечатление, что в этих функциях проявляется некая скрытая нумерология, которую никто не понимает. Именно эти магические числа возникают в эллиптической модулярной функции, которая определяет количество измерений пространства-времени равным десяти.
В конечном итоге источник десятимерной теории так же загадочен, как сам Рамануджан. На вопрос слушателей, зачем природе существовать в десяти измерениях, физики вынуждены отвечать: «Не знаем». Мы имеем смутное представление о том, почему требуется выбирать несколько измерений пространства-времени (иначе струна не в состоянии колебаться самосогласованным квантовым образом), но не знаем, почему выбор падает на эти конкретные числа. Вероятно, разгадка ждет, когда ее обнаружат в утраченных тетрадях Рамануджана.
100 лет математики, открытые заново
Рамануджан родился в 1887 г. в Эроде, Индия, близ Мадраса. Его семья принадлежала к высшей индуистской касте браминов, однако обеднела и жила на скудные заработки отца Рамануджана, служившего клерком в конторе торговца платьем.
К тому времени, как Рамануджану исполнилось 10 лет, стало ясно, что он отличается от других детей. Как и Риман до него, он прославился в округе удивительными математическими способностями. Еще ребенком он сам вывел тождество Эйлера между тригонометрическими и экспоненциальными функциями.
В жизни каждого молодого ученого есть поворотный момент — некое событие, определяющее дальнейший ход его жизни. Для Эйнштейна таким событием стало озарение при виде стрелки компаса. Для Римана — чтение книги Лежандра по теории чисел. А для Рамануджана такой момент наступил, когда он наткнулся на ничем не примечательный и забытый труд математика Джорджа Карра. Он был единственным для Рамануджана источником сведений о западной математике того времени, что и сделало книгу знаменитой. По словам его сестры, «именно эта книга пробудила в нем дар. Он поставил перед собой задачу доказать формулы, приведенные в ней. Поскольку он не мог обратиться к другим книгам, каждое решение представляло собой исследование, в котором он заходил так далеко, как считал нужным… Рамануджан часто повторял, что богиня Намаккал вдохновляет его формулами во сне»[85].
Блестящие способности помогли Рамануджану получить стипендию для обучения в старших классах школы. Но школьная рутина наскучила ему, вдобавок он был настолько поглощен формулами, которые постоянно роились у него в голове, что перейти в выпускной класс не смог и лишился стипендии. В досаде Рамануджан сбежал из дома. В конце концов он вернулся, но заболел и вновь провалился на экзаменах.
Друзья помогли Рамануджану устроиться мелким служащим в мадрасский порт. Эта неквалифицированная работа, за которую платили всего 20 фунтов стерлингов в год, освободила Рамануджана (как Эйнштейна — работа в швейцарском патентном бюро) и дала ему возможность посвятить свободное время своим увлечениям. Результаты сновидений Рамануджан отправил трем известным британским математикам, надеясь установить контакты и с другими специалистами в этой области. Двое математиков, получив письмо от никому не известного индийского клерка, не имеющего официального образования, просто выбросили его. Третьим был талантливый математик из Кембриджа Годфри Харди. Благодаря своему положению Харди привык к странным письмам от незнакомцев и не ждал от очередного послания ничего хорошего. На сплошь исписанных листах он заметил немало уже известных математических теорем. Решив, что к нему обратился явный плагиатор, Харди не стал читать дальше. Но что-то не давало ему покоя. Какая-то мысль точила Харди, не позволяя забыть о странном письме.