На примере покажу вам различие эффектов, получаемых от быстро меняющейся и постоянной или умеренно меняющейся силы. Здесь у меня две круглые медные пластины рр (рисунки 6а и 66), установленных на изолирующих подставках на столе, и соединенных с вторичной обмоткой катушки, подобной той, что мы применяли в последний раз. Я ставлю пластины на расстоянии 10–12 дюймов друг от друга и включаю катушку. Вы видите, что всё пространство между пластинами, около двух кубических футов, заполнено однородным светом (рисунок 6а). Этот свет образуют потоки, которые вы наблюдали в предыдущем опыте, но которые сейчас гораздо интенсивнее. Я уже говорил о важности этих потоков для использования в коммерческих устройствах, но еще более они важны для постановки чисто научных экспериментов. Часто они слишком слабы, чтобы их заметить, но они всегда есть, и они потребляют энергию и изменяют действие устройств. При такой интенсивности, как сейчас, они в большом количестве производят озон и, как отметил профессор Крукс, азотистую кислоту. Химическая реакция настолько стремительна, что если катушку, такую, как наша, оставить работать достаточно долго, то атмосфера в комнате станет невыносимой, настолько сильно будет воздействие на глаза и горло. Но если потоки производить в умеренном количестве, они прекрасно освежают воздух и производят, несомненно, благоприятный эффект.
Во время этого эксперимента сила, работающая между пластинами, меняет интенсивность и направление с большой скоростью. Теперь я замедлю скорость изменений за единицу времени. Этого я добиваюсь, понижая частоту разрядов через первичную обмотку катушки, а также уменьшая скорость вибраций во вторичной обмотке. Первое удобно сделать, уменьшив эдс в промежутке в первичном контуре, а второе — приблизив пластины друг к другу на расстояние 3–4 дюйма. При включении катушки вы не наблюдаете ни стримеров, ни света между пластинами, и всё же пространство между ними находится под огромным напряжением. Я еще увеличу напряжение, подняв эдс в первичном контуре, и вскоре вы увидите, что воздух пробит и всё помещение озарено дождем ярких и шумных искр (рисунок 66). Эти искры можно получить и от постоянной силы; много лет это явление хорошо известно, хотя и получалось от другого устройства. Описывая эти два феномена, такие разные на вид, я намеренно употреблял понятие «силы», действующей между пластинами. Если я скажу, что между пластинами действовала «переменная эдс», то это вполне будет соответствовать современным взглядам на предмет. Этот термин вполне верен и применим во всех случаях, когда есть свидетельства того, что хотя бы возможна взаимозависимость электрических состояний пластин или электрического действия окружающей среды. Но если пластины раздвинуть бесконечно далеко, или на определенное большое расстояние, то вероятность и необходимость взаимозависимости исчезнут. Я предпочитаю термин «электростатическая сила» и считаю, что такая сила действует вокруг каждой пластины или наэлектризованного изолированного тела в целом. При использовании этого термина возникает неудобство, так как он подразумевает статическое электрическое состояние; но правильная терминология со временем расставит всё по местам.
Теперь я вернусь к эксперименту, на который уже ссылался и при помощи которого я намереваюсь продемонстрировать один поразительный эффект, производимый меняющейся электростатической силой. К концу провода / (рисунок 7), соединенного с выводом вторичной обмотки катушки индуктивности, я присоединяю вакуумную лампу Ъ. Внутри лампы находится тонкая углеродная нить f, соединенная с платиновым проводом т, запаянным в стекло и выходящим наружу, где он соединен с проводом /. Воздух можно откачать до любой степени при помощи обычных устройств. Совсем недавно вы наб люд ал и пробой воздуха между двумя заряженными медными пластинами. Вы знаете, что стеклянная пластина, или пластина из другого изолирующего материала, пробивается подобным же образом. Следовательно, если бы я обернул лампу листом металла или поместил металлическую пластину, соединенную с другим выводом катушки, рядом с лампой, вы были бы готовы к тому, что сейчас стекло будет пробито при условии достаточного напряжения. Даже если бы покрытие не было соединено с другим выводом катушки, но присоединялось к изолированной пластине, если вы следили за происходившим ранее, вы бы ожидали, что стекло треснет.
Но вы будете удивлены, когда заметите, что под действием переменной электростатической силы стекло пробивается, когда все остальные предметы удаляются от лампы. На самом деле, все окружающие предметы можно удалить от лампы на бесконечно огромное расстояние, при этом ни капли не повлияв на результат опыта. Когда включается катушка, стекло неизменно трескается у основания или в другом узком месте, и вакуум быстро исчезает. Такой разрушительный пробой не происходит при постоянной силе, даже если она во много раз сильнее. Разрушение происходит вследствие возбуждения молекул газа внутри лампы и снаружи. Это возбуждение, которое гораздо сильнее в узком месте, приводит к нагреву и трещине. Этого разлома, однако, не случится, если среда, наполняющая лампу, и среда снаружи будут совершенно однородны. Пробой происходит гораздо быстрее, если верхняя часть лампы вытягивается до толщины волокна. В лампах, работающих от таких катушек, следует избегать таких узких, заостренных каналов.
Когда проводник помещен в воздух или подобную изолирующую среду, состоящую или содержащую мелкие, свободно движущиеся частицы, способные электризоваться, и когда электризация тела подвергается быстрому изменению, — что соответствует тому, что электростатическая сила, действующая вокруг тела меняет интенсивность, — мелкие частицы притягиваются и отталкиваются и их сильные удары могут вызвать механическое движение тела. На явления такого рода стоит обратить внимание, так как они не наблюдались ранее, когда применялась обычная аппаратура. Если очень легкий шарик из проводника подвесить на крайне тонком проводе и зарядить до любого постоянного потенциала, пусть и очень высокого, шарик останется в покое. Даже если потенциал будет быстро меняться, при условии, что небольшие частицы материи, молекулы и атомы, равномерно распределены, это не приведет к движению шарика. Но если одну сторону шарика покрыть толстым слоем изоляции, удары частиц заставят его двигаться по неровной траектории (рисунок 8а). Таким же образом крыльчатка, изготовленная из тонкого металла и частично покрытая слоем изоляции, как описывалось ранее, соединенная с выводом катушки, начинает вращаться.
Все эти явления, которые вы наблюдали, а также те, которые будут продемонстрированы позже, имеют место благодаря присутствию такой среды, как воздух, и были бы невозможны в непрерывной среде. Действие воздуха еще лучше можно проиллюстрировать следующим опытом. Я беру стеклянную трубку t (рисунок 9) диаметром, примерно, 1 дюйм, в нижнем конце которой находится запаянный в стекло платиновый провод, к которому присоединена тонкая нить накаливания f. Я соединяю провод с выводом катушки и включаю ее. Платиновый провод теперь электризуется попеременно положительно и отрицательно, и сам провод и воздух в трубке быстро нагреваются от ударов частиц, которые могут быть настолько сильными, что нить быстро накаляется.
Но если налить в трубку масло и как только оно покроет нить, всё действие моментально прекращается, и признаков нагрева нет. Причина тому — масло, практически непрерывная среда. Смещение в такой среде при таких частотах, судя по всему, несравнимо меньше, чем в воздухе, поэтому работа, происходящая в ней, незначительна. Но масло поведет себя совсем не так при частоте во много раз выше, поскольку даже если смещение и меньше, а частота намного выше, работа, производимая в масле, будет соответственно больше.
Электростатические притяжения и отталкивания тел измеримых габаритов из всех проявлений этой силы — первые отмеченные так называемые электрические явления. Но хотя мы знакомы с ними уже несколько столетий, точная природа механизма этих явлений нам до сих пор неизвестна, и не была удовлетворительным образом объяснена. Что же это за механизм? Мы не можем не удивляться, когда видим два магнита, притягивающие и отталкивающие друг друга с силой в несколько сотен фунтов, а между тем между ними ничего нет. В наших промышленных динамо-машинах установлены магниты, способные удерживать в воздухе предметы весом в несколько тонн. Но что такое даже эти силы, действующие между магнитами, по сравнению с гигантскими силами притяжения и отталкивания, производимыми электростатической силой, интенсивность которой не имеет предела. Во время разрядов молнии предметы часто заряжаются до неимоверного потенциала, такого, что их отбрасывает в сторону с непостижимой силой, разрывает на части или разносит на куски. И всё же даже эти эффекты не сравнятся с притяжениями и отталкиваниями, которые существуют между молекулами и атомами и которых достаточно, чтобы направлять их движение со скоростью несколько километров в секунду, так что под их яростными ударами предметы сильно раскаляются и испаряются. Особенно интересно для мыслителя, занятого исследованием природы этих сил, отметить, что в то время как действие между молекулами и атомами происходит, кажется, при любых условиях, притяжение и отталкивание крупных тел подразумевает наличие среды, обладающей изолирующими свойствами. Так, если воздух, разреженный или нагретый, стал более или менее проводником, то это взаимодействие между двумя заряженными телами практически прекращается, в то время как взаимодействие между атомами продолжает проявляться.