Рейтинговые книги
Читем онлайн Пуанкаре - Алексей Тяпкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 137

Так была названа им особая замкнутая кривая, представляющая одно из решений дифференциального уравнения. Все другие кривые, определяемые этим уравнением, проходя вблизи предельного цикла, наматываются на него либо изнутри, либо снаружи. Неограниченно приближаясь к нему, они тем не менее никогда его не пересекают и даже не соприкасаются с этой недосягаемой для них кривой. Новое понятие оказалось не менее важным, чем понятие особой точки. Если известен предельный цикл, можно быть твердо уверенным, что кривая навсегда останется либо внутри его, либо вне, поскольку перейти эту границу она не может, как бы близко к ней ни подходила, ото значит, что можно указать пределы перемещения тела — либо верхние, либо нижние. Доказав, что число предельных циклов всегда конечно, не считая некоторых исключительных случаев, Пуанкаре разработал способы их обнаружения и дал общий метод для определения их количества.

Перед математиками открылись новые, совершенно необычные возможности. Все богатство решений некоторых видов дифференциальных уравнений становилось наглядным и легкообозримым, словно своеобразный топографический план, на котором вместо возвышенностей и котловин обозначены узлы и фокусы, а вместо линий уровня нанесены предельные циклы. Даже не зная решения дифференциального уравнения, можно было теперь делать выводы о характере движения. Геометрия решения шла впереди его аналитического, формульного представления. Впереди или рядом, потому что оба метода исследования — аналитический и качественный — не подменяли, а дополняли друг друга. Своим открытием фуксовых функций Пуанкаре уже отдал дань старому, аналитическому методу исследования дифференциальных уравнений, обогатив и расширив его возможности. Теперь им был создан еще один метод — качественный, которому предстояло большое будущее.

Вслед за первыми двумя мемуарами, в которых развивалась качественная теория дифференциальных уравнений первого порядка, последовали два других — в 1885 и в 1886 годах, где Пуанкаре рассматривает уже более сложные дифференциальные уравнения второго порядка. В последующие десятилетия математики не раз дополняли и обобщали его результаты, начиная с работ норвежского ученого Бендиксона, который в 1901 году использовал в качественных исследованиях методы теории множеств. Но ничего существенно нового из основных принципов и идей добавлено не было, настолько полной и всеобъемлющей была качественная теория в трудах Пуанкаре. Исключение составила теория центров, изложенная в третьем мемуаре. Она была во многом перекрыта исследованиями русского математика А. М. Ляпунова, который благодаря своим фундаментальным работам по теории устойчивости считается наряду с Пуанкаре создателем качественной теории дифференциальных уравнений.

Глава 7

АКАДЕМИЯ НАУК

Гость на улице Гей-Люссака

Грузный пожилой человек тяжело поднимается по узкой крутой лестнице, которой, казалось, не будет конца. Несмотря на те усилия, которые ему приходится прикладывать, он, не останавливаясь, преодолевает несколько пролетов и, только достигнув третьего этажа, переводит дух. «Прямо голубиное гнездо какое-то, а не жилище», — думает он, отирая платком крупную лысеющую голову. Взгляд его с удивлением останавливается на фигуре молодого человека, показавшегося в дверях. «Боже мой, такой молодой и такой белокурый!» — отмечает гость про себя. «Господин Сильвестр, — полувопросительно обращается к нему хозяин этих вознесенных над землей покоев, — очень рад вас видеть. Прошу».

Да, это был Джон Сильвестр, знаменитый английский математик, который на 71-м году жизни прибыл на континент, чтобы лично встретиться с молодым автором тех многочисленных статей, которые, по его мнению, возвещали о появлении во французской науке нового Коши. Войдя в комнату, гость некоторое время молча вглядывался в юношеское еще лицо коллеги, узнавая и не узнавая столько раз представлявшиеся его воображению черты.

Проходит две-три минуты. Пуанкаре из вежливости не прерывал молчание, давая возможность уважаемому посетителю прийти в себя после трудного подъема по лестнице. Гость… Впрочем, вот как он сам вспоминает об этом визите: «В присутствии этого резервуара интеллектуальной мощи мой язык вначале отказался мне повиноваться, и так продолжалось до тех пор, пока я какое-то время (может быть, две или три минуты) рассматривал и впитывал его внешние юношеские черты. Только после этого я обрел возможность говорить». Свое первое знакомство с Пуанкаре, жившим тогда на улице Гей-Люссака, недалеко от здания Сорбонны, Сильвестр сравнивает с происходившей в начале XVII века встречей изобретателя логарифмов Джона Непера и составителя первой таблицы логарифмов Генри Бриггса. Оба ученых были уже так наслышаны друг о друге и заочно так хорошо были знакомы по своим работам, что, когда Бриггс вошел в комнату, где находился Непер, они в течение нескольких минут с восхищением взирали друг на друга, не в силах произнести ни слова. «Я был проникнут чувствами Бриггса во время его встречи с Непером», — признается Джон Сильвестр.

О чем беседовали прославленный английский математик и его молодой французский коллега, осталось неизвестным. Но можно не сомневаться, что очень скоро они углубились в обсуждение сугубо профессиональных вопросов. Пуанкаре, наверное, рассказывал о своих последних результатах по качественной теории дифференциальных уравнений, о дальнейшем приложении фуксовых функций к решению алгебраических проблем. Как раз незадолго до этого Фукс опубликовал в «Докладах» Берлинской академии статью, весьма заинтересовавшую Пуанкаре. Уже не раз задавал он себе вопрос: нельзя ли применить методы, оказавшиеся столь успешными при интегрировании линейных дифференциальных уравнений, к нелинейным уравнениям, пусть даже не ко всем, а только к некоторым? Существенное различие между линейными и нелинейными дифференциальными уравнениями заключалось в количестве особых точек: у первых их было конечное число, у вторых — бесконечное множество. Если бы среди нелинейных уравнений нашлись такие, которым соответствует ограниченная совокупность особых точек, то можно было бы попытаться применить к ним уже развитый для линейных уравнений подход. И вот Фукс формулирует теорему, в которой высказывает необходимые и достаточные условия для того, чтобы дифференциальное уравнение имело только конечное число особых точек. Повторялась ситуация, сложившаяся накануне открытия фуксовых функций. Немецкий математик снова заразил Пуанкаре лихорадкой поисков новых высших трансцендентных функций, с помощью которых можно было бы интегрировать некоторые из нелинейных дифференциальных уравнений. Но на этот раз после углубленного изучения вопроса Анри пришел к неутешительному итогу. Все нелинейные уравнения, которые удовлетворяли условиям Фукса, либо попросту сводились к линейным, либо же интегрировались с помощью уже известных функций, например эллиптических. Найти новый класс интегрируемых уравнений не удалось.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 45 46 47 48 49 50 51 52 53 ... 137
На этой странице вы можете бесплатно читать книгу Пуанкаре - Алексей Тяпкин бесплатно.

Оставить комментарий