Исследовавшийся мною и Ренни вопрос о самоорганизации был поначалу сформулирован Чарли Пескином, специалистом по прикладной математике, сотрудником Института Куранта (Courant Institute) при Нью-Йоркском университете. Человек с тихим и спокойным голосом, с аккуратно подстриженной бородкой и с неизменно приветливой улыбкой, Чарли Пескин является одним из самых выдающихся математиков с уклоном в биологию. Разгадывая тайны физиологии (например, как молекулы, ткани и органы человеческого тела справляются со своими сложными функциями), он предпочитает пользоваться компьютерами и математикой. Какие бы проблемы он ни пытался решать – как сетчатке человеческого глаза удается обнаружить даже самый слабый свет или как молекулярные «двигатели» вырабатывают силу в мышцах, – его «фирменным знаком» является разносторонность научных интересов. Создается впечатление, что он хочет попробовать себя во всех областях знания и исследовать все тайны природы. Если необходимого ему математического аппарата еще не существует, он обязательно должен изобрести такой аппарат. Если для решения рассматриваемой им проблемы требуется суперкомпьютер, Пескин разработает для него соответствующую программу. Если существующие процедуры работают слишком медленно, он придумает более быстрые процедуры.
Даже его математический стиль отличается высокой гибкостью и прагматизмом. Его самая известная работа связана с разработкой трехмерной модели тока крови в камерах сердца, качающего кровь. Эта модель отличается реалистичностью анатомии, сердечных клапанов и строения волокон. Для решения столь сложной задачи он использовал грубую мощь суперкомпьютерного моделирования в сочетании с изысканностью абсолютно оригинальной вычислительной схемы. Что же касается решения других проблем, Пескин обычно придерживается известной максимы Эйнштейна, согласно которой все нужно делать по возможности проще – но не проще необходимого. В таких случаях Пескин отдавал предпочтение минималистскому подходу, пренебрегая всеми биологическими подробностями, за исключением лишь самого важного. Именно в таком минималистском духе Пескин предложил схематическую модель того, как клетки, задающие ритм работы сердца, могли бы синхронизировать сами себя[13].
Натуральный задатчик ритма работы сердца представляет собой подлинное чудо эволюции – возможно, самый впечатляющий осциллятор из когда-либо созданных природой. Кластер, состоящий из примерно 10 тысяч клеток и называемый синусно-предсердным узлом, вырабатывает электрические импульсы, которые задают ритм работы сердца в целом. Синусно-предсердный узел должен действовать чрезвычайно надежно, минута за минутой, обеспечивая примерно три миллиарда сокращений сердца за все время жизни человека. В отличие от большинства клеток сердца, клетки-ритмоводители вырабатывают электрические импульсы автоматически; если их изолировать в чашке Петри, то напряжение генерируемых ими импульсов ритмично повышается и снижается.
Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?
Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.
В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.
Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.
Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.
Чтобы получить более наглядную картину происходящего, представьте отдельно взятую клетку в виде бачка унитаза, наполняющегося водой. Когда вода поступает в бачок, ее уровень постепенно повышается, подобно напряжению в клетке. Допустим, что когда вода в бачке достигнет определенного уровня, произойдет автоматический слив воды из бачка. Быстрый слив воды вернет ее уровень к исходному (условно нулевому), после чего бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.