Примечание. Слово «мистика» приобрело сегодня достаточно много значений, зачастую связанных с противопоставлением науки и религии, но в данной книге оно употребляется только в одном. Мистика – это то, что, не имея собственного наглядно представимого образа, воспринимается, как нечто реально существующее и влияющее на наглядно представимую материю, а также, соответственно, мнения и теории, «исходящие из того, что подлинная реальность недоступна разуму» [2] (статья «Мистицизм»).
При такой сложности представлений о природе и их фактической монополии в науке неизбежны противоречия во взглядах на наш Мир людей, не желающих смириться с тем, что их разум уже не в состоянии воспринимать современные им официальные научные объяснения. Доказательством этому является возникновение множества альтернативных официальной науке теорий, которые чаще всего ею просто игнорируются или, в лучшем случае, принимаются во внимание без каких-либо серьёзных попыток учесть их. Правда, зачастую эти альтернативные теории чрезвычайно экзотичны, и связать их со всей совокупностью наших знаний о природе практически невозможно. Сюда же следует отнести и «паранормальные явления». Введя этот термин, официальная наука, по сути, дала себе возможность произвольно выбирать, какие из объективно наблюдаемых в природе явлений она должна объяснять, а какие может не учитывать. Таким образом, теоретическая физика распалась на официальную, альтернативную (которая в качестве равноправной официальной не рассматривается) и паранормальную части. Более того, сама официальная теоретическая физика уже фактически разделилась на несколько не связанных между собой фрагментов. В [7] приведена цитата из высказываний Макса фон Лауэ, ученика Планка: «…в течение многих лет Планк стремился уничтожить пропасть между классической и квантовой физикой или хотя бы перебросить мост между ними. Он потерпел неудачу, но его усилия не были напрасными, так как доказали невозможность успеха таких попыток». Вот так – ни больше, ни меньше. Оба указанных направления в физике при этом не опровергают друг друга, оба считаются применимыми в науке. А моста между ними нет и, по мнению фон Лауэ, даже быть не может. И это мнение профессионального физика, Нобелевского лауреата, который в нём не одинок. Такого же мнения придерживался, например, и Нильс Бор.
А ведь Макс Планк был основоположником квантовой теории. И, судя по тому, что мне довелось про него узнать в [5] (статья «Планк») и в [7], даже судьба собственной идеи, сделавшей ему имя в науке, не могла заставить его пожертвовать единством физики, и вообще тем, что в философском и общечеловеческом плане он считал правильным. Совсем не случайно, именно слова Планка я выбрал в качестве эпиграфов к большинству глав этой книги. Честность этого человека, его бесстрашная готовность во имя торжества истины пожертвовать многим, в том числе и своим научным авторитетом, точность, с какой он формулировал свои мысли, не может не вызывать уважения и желания следовать его примеру. Этим качествам Планка не раз отдавал должное в своих высказываниях и Эйнштейн. По-моему, Планк доказал не то, что написал фон Лауэ, делая ему комплимент с оттенком высокомерия ученика (судя по всему, действительно хорошего ученика), уверенного в том, что он превзошёл своего учителя, а как раз обратное:
– что любая новая теория, так или иначе, базируется на уже накопленных наукой и человечеством в целом знаниях и представлениях;
– что, изменяя наше восприятие реальности, новая теория должна дать взамен только ещё более логичные, ясные и лучшим образом взаимосвязанные между собой и с другими теориями всех без исключения наук понятия;
– что, даже полностью отвергая прежние научные взгляды, новая теория обязана объяснить причины их появления в прошлом и признать их как предпосылки своего создания, позволившие уменьшить количество возможных вариантов восприятия реальности, то есть, как неоспоримый вклад в науку;
– что поиск истины и научная честь должны быть для учёного выше любых личных и корпоративных интересов.
По-моему, Планк стремился именно к этому. Никто из нас, людей, никогда не достигает всего, чего он хочет, и никогда не бывает во всём прав. Но Планк показал и доказал необходимость такого стремления. Браво, господин Планк!
Сделав это небольшое отступление, вернёмся к основной теме. Напрашиваются вопросы. Почему же именно в двадцатом веке, именно теоретическая физика, неимоверно усложнив наши представления о Мире, одновременно обеспечила и невиданный в истории человечества технический прогресс? Разве это не является доказательством того, что эта наука на правильном пути?
Для ответа давайте разберёмся, как способствуют техническому прогрессу понимание (теория) и знание (опыт, практика). В первую очередь, речь далее пойдет о теоретической базе естественных наук, но, учитывая явную взаимосвязь всех научных теорий, это касается и гуманитарных наук, а через них и всей нашей цивилизации.
Хорошо отражающая объективную реальность теория, конечно, делает прогресс более целенаправленным и, в силу этого, экономным. Кроме того, такая теория предотвращает развитие ситуаций, когда наши желания и цели выходят за рамки наших возможностей. С недавних пор очень большое значение понимание реальности имеет и в плане обеспечения техногенной безопасности. Ведь даже сегодняшние наши технические достижения уже позволяют нам уничтожить себя и всё живое вокруг. Поэтому идти «на ощупь» по пути прогресса в таких отраслях, как, например, ядерная энергетика – это большой риск. То есть без правильного научного понимания природы, технический прогресс ограничен и опасен, как недопустимым перенапряжением всей нашей экономики (отсюда общественные кризисы и катаклизмы), так и увеличением вероятности глобальной техногенной катастрофы. Впрочем, теория, неверно отражающая реальность, здесь даже опаснее, чем её полное отсутствие. Но до этих критических пределов, переступить которые даёт возможность, по-моему, только правильная теория, технический прогресс вполне способен к самостоятельному развитию даже и без развития фундаментальной науки вообще. В промежутках между указанными кризисами, практически применимые результаты технического прогресса обеспечивают, в основном, прикладные научно-исследовательские и опытно-конструкторские работы (НИОКР), а также развитие технологий, то есть средств и методов производства. Здесь на первом месте по значимости опыт, эксперимент и изобретательская деятельность (в том числе и по организации производства). Эксперименты, проводящиеся в целях теоретической физики и других наук, не раз приводили к полезным изобретениям и открытию побочных эффектов, которые не имели большого значения для фундаментальной науки, но обладали практической ценностью. Техническое обеспечение научных экспериментов способствует прогрессу едва ли не больше, чем НИОКР в области вооружений. А ведь кризисы теории в науке, как правило, приводят к активизации экспериментальных исследований.
Можно привести и исторический пример, показывающий отсутствие прямой зависимости (а, по сути, даже обратную зависимость) между развитием фундаментальной науки и техническим прогрессом. Применение в Европе пороха началось в четырнадцатом веке. Этот величайший технический прорыв совпал во времени с периодом полного упадка естественных наук (в современном понимании) и безраздельного господства мистических представлений в естествознании. Именно основанная на мистике, но не только на мистике, а ещё и на экспериментах, алхимия во многом способствовала (за счёт ясного понимания алхимиками влияния количественного соотношения и дисперсности различных веществ в смеси на её свойства) развитию технологии производства и совершенствованию пороха, этой атомной бомбы средневековья, перед которой не устояли ни панцири рыцарей, ни казавшиеся прежде неприступными стены их замков. Мистика здесь, конечно, не при чём – она на такое не способна, а вот эксперименты, пусть даже спланированные на основе мистических представлений, как видите, способны вполне.
Итак, даже если теория не до конца (или даже неправильно) разобралась с фундаментальной природной сущностью наблюдаемых явлений, мы вполне можем использовать полученные экспериментальным путем знания на практике, сегодня тем более, так как способны математически описать эти знания приближёнными эмпирическими (заведомо не отражающими теоретический смысл) функциональными зависимостями, например, степенными полиномами или сплайн-функциями, а современные компьютеры позволяют нам методом последовательных приближений решать системы уравнений практически любой сложности. Мы можем с помощью компьютера моделировать не только всё то, что наблюдаем, но и свои фантазии. В виртуальном компьютерном мире мы легко можем искривлять пространство и поворачивать время вспять. Здесь вообще нет ограничений… СТОП!… КОМПЬЮТЕР?!