Свет-это электромагнитная волна. В любой точке пространства, через которую проходит световой луч, напряженность электрического поля совершает периодические колебания. Максимум и минимум напряженности бегут в пространстве со скоростью света. Если источник излучает свет определенной частоты, то мы будем принимать его в точности на этой частоте лишь в том случае, когда расстояние между источником и приемником не изменяется. Если же источник движется по направлению к нам, то каждый следующий максимум проходит немного меньший путь, чем предыдущий. Поэтому волновые максимумы приходят к нам чуть чаще, чем их посылает источник. Свет от источника, движущегося по направлению к нам, кажется немного более высокочастотным (т. е. более «голубым»), чем свет от того же источника, когда он неподвижен. Наоборот, свет от источника, который удаляется от нас, кажется более низкочастотным (т. е. более «красным»), чем свет от такого же источника в лаборатории. Это, собственно, тот же эффект, который иллюстрируется на рис. 10.5, где интервал между принимаемыми рентгеновскими вспышками зависит от того, движется источник при своем обращении по орбите по направлению к нам или от нас.
Доплеровский сдвиг особенно хорошо заметен в спектрах звезд (рис. А.2). Чтобы измерить его, лучше всего сравнить спектр звезды с полученным в лаборатории на том же спектрографе спектром поглощения вещества и посмотреть, находятся ли линии поглощения отдельных элементов в звездном спектре там, где они должны быть, или же они смещены. Из этого легко рассчитать, с какой лучевой скоростью движется звезда.
Рис. А.2. Доплеровский спектральный сдвиг. Спектр излучения звезды (а). Сдвиг спектральных линий в случае, когда звезда движется по направлению к нам (б). Все линии смещаются влево к фиолетовому краю спектра, в область более высоких частот. Сдвиг спектральных линий в случае, когда звезда удаляется от нас (в). Все линии смещены к красному краю спектра. Направления доплеровского сдвига частоты указаны стрелками.
Особенно важны измерения лучевой скорости для тесных двойных систем. Звезда, обращающаяся вокруг другой звезды, в течение одного оборота движется сначала по направлению к нам, а затем от нас, если только мы смотрим не строго перпендикулярно к плоскости ее орбиты. Это периодическое изменение скорости может быть измерено с помощью спектров и затем использовано для определения масс звезд, как описано в приложении В. О многих звездах мы знаем, что они двойные, а не одиночные, именно благодаря доплеровскому сдвигу линий в их спектрах. Они находятся так далеко от нас в пространстве и расположены так близко одна к другой, что с помощью телескопа различить звездную пару невозможно. Но даже если они при обращении не затмевают друг друга, мы можем установить по периодическому смещению линий в их спектрах, что здесь две звезды обращаются одна вокруг другой.
Приложение Б
Как измеряют Вселенную
Мы мало что могли бы сказать о звездах, если бы не знали, на каком расстоянии от нас они находятся. Неприметная светящаяся точка в небе может быть «звездой», которая имеет меньше метра в диаметре, находится недалеко от Земли и не излучает своего света, а лишь отражает солнечный. Но она может быть и небесным телом, которое излучает столько же света, сколько целая галактика, но находится так далеко от нас во Вселенной, что расстояние не дает нам почувствовать всю силу его сияния. Очень трудно от прямых измерений расстояний на Земле перейти к измерению расстояний во Вселенной.
Сегодня, в век электроники, измерения в нашей Солнечной системе не составляют проблем. На Венеру направляют радиолокатор, а потом используют закон, открытый Иоганном Кеплером еще к началу Тридцатилетней войны — так называемый третий закон Кеплера. Он устанавливает связь между периодом обращения планет вокруг Солнца и радиусами их орбит. Согласно закону Кеплера, для двух планет А и В (например, Венеры и Земли), справедливо соотношение
(период обращения А)2 х (радиус орбиты В)3 = (период обращения В)2 х (радиус орбиты А)3.
Периоды обращения планет могут быть непосредственно измерены (для Земли 365,26 суток, для Венеры 224,70 суток), так что вышеприведенное соотношение устанавливает связь между радиусами двух орбит.
Отраженный от Венеры сигнал радиолокатора принимается на Земле, и по времени, прошедшему от момента посылки до приема сигнала, движущегося со скоростью света, определяют расстояние от Земли до Венеры, т. е. разность радиусов их орбит. Теперь у нас есть два уравнения для двух неизвестных (радиусов орбит Земли и Венеры) которые легко решить.
Следующий шаг-это переход от нашей Солнечной системы к звездам. Для этого астрономы пользуются методом параллаксов, который, как указывалось в гл. 4, был предложен еще Галилео Галилеем, но впервые успешно применен только в 1838 г. Фридрихом Вильгельмом Бесселем для определения расстояния до звезды 61 Лебедя Вследствие годичного обращения Земли вокруг Солнца направление, в котором мы видим ту или иную ближнюю звезду на небе, в течение года меняется. Это схематически представлено на рис. Б.1. Длину линии, связывающей положения Земли 1 января и 1 июля, мы знаем: это удвоенный радиус орбиты Земли. Углы между плоскостью орбиты и направлением на звезду можно измерить, наблюдая звезду в указанные два дня. Таким образом, в показанном на рисунке треугольнике нам известны сторона и два угла; зная три элемента треугольника, можно вычислить все остальные — этому мы научились еще в школе. Можно, стало быть, вычислить расстояния от Земли до звезды 1 января и 1 июля. Во всех практических случаях звезда находится так далеко, что небольшим различием между этими расстояниями пренебрегают.
Рис. Б. 1. Метод параллаксов. Расстояние АВ равно удвоенному расстоянию от Земли до Солнца, определенному методом радиолокации Венеры. Углы при А и В можно измерить 1 января и 1 июля-таким образом становятся известны три элемента треугольника ABC- определение искомых двух сторон представляет собой несложную школьную задачу.
Так можно узнать расстояние до звезды от нашей Солнечной системы. Описанный метод позволяет измерять расстояния до 300 световых лет. В частности, расстояния до всех звезд, показанных на диаграмме Г-Р на рис. 2.2 для звезд, ближайших к Солнцу, определены методом параллаксов. Для звезд, которые находятся от нас дальше во Вселенной, различия между направлениями, в которых эти звезды видны через полугодичный интервал, столь малы, что измерить их не удается. Здесь этот метод уже не работает.
Другой важный метод определения расстояний я могу описать лишь приблизительно. Он основан на том, что звезды, принадлежащие к одному скоплению, движутся все в одном направлении с одинаковыми скоростями по параллельным траекториям. Хотя их движение наблюдается как крошечное, неизмеримо малое смещение на небе, для многих скоплений удается заметить, что их параллельные траектории сходятся в одной точке, подобно тому как сходятся рельсы железной дороги в одной точке на горизонте. Эта точка говорит нам о том, в каком направлении движется та или иная группа звезд. Измерив лучевую скорость движения звезд с помощью эффекта Доплера, а также скорость, с которой эти звезды год от года смещаются относительно очень удаленных (неподвижных) звезд, можно определить расстояние до интересующего нас скопления. Задача снова сводится к решению треугольников, но здесь мы не будем вдаваться в подробности. Так было измерено расстояние до многих звездных скоплений, что позволило определить светимость звезд и их положение на диаграмме Г-Р, как рассказывалось в гл. 2.
Можно поступить и наоборот. Если звезды находятся так далеко, что ни один из описанных методов не дает результатов, то пользуются тем фактом, что менее массивные звезды лежат на главной последовательности, и, как положено, светимость каждой соответствует ее цвету. И если я смогу определить цвет звезды главной последовательности какого-либо скопления, то тут же буду знать и ее светимость. Сравнивая светимость звезды с ее блеском (яркостью, которую имеет звезда на небе), я после несложных вычислений определю расстояние до нее, а следовательно, и до звездного скопления.
То, что удалось проникнуть в космос на еще большие расстояния, почти фантастично. По причинам, которые долгое время оставались непонятными, пульсирующие звезды-цефеиды, о которых говорилось в гл. 6, обладают замечательным свойством. Между их периодом и светимостью существует однозначная связь (рис. Б.2). Период изменения блеска цефеид легко установить с помощью регулярных наблюдений, и тогда нетрудно, зная показанную на рис. Б.2 закономерность, определить их светимость, среднюю за период. А сравнивая светимость с блеском звезды, легко вычислить расстояние до нее. Цефеиды обладают очень высокой светимостью, поэтому их можно наблюдать не только в самых отдаленных уголках нашего Млечного Пути, но и среди звезд других галактик. Благодаря этому удалось определить расстояние от нашей собственной Галактики, до галактик, лежащих дальше от нас, чем Туманность Андромеды.