Газоубежище
Газоубе'жище, специальное защитное сооружение или помещение, предназначенное для противохимической защиты людей. После 2-й мировой войны 1939—45 подобные сооружения стали называть убежищами . Термин «Г.» из употребления вышел.
Газофракционирующая установка
Газофракциони'рующая устано'вка, служит для разделения смеси лёгких углеводородов на индивидуальные, или технически чистые, вещества.
Г. у. входит в состав газобензиновых, газоперерабатывающих, нефтехимических и химических заводов. Мощность Г. у. достигает 750 тыс. т сырья в год. Для переработки на Г. у. поступает сырьё — газовые бензины, получаемые из природных и нефтезаводских газов, продукты стабилизации нефтей, газы пиролиза и крекинга . В состав сырья входят в основном углеводороды, содержащие от 1 до 8 атомов углерода в молекуле. Разделение смесей углеводородов осуществляется ректификацией в колонных аппаратах.
Схема разделения газового бензина в Г. у. включает предварительный нагрев в теплообменнике газового бензина и подачу его в пропановую колонну (рис. ). Из верхней части колонны отводятся пары пропана, которые конденсируются в конденсаторе-холодильнике и поступают в ёмкость орошения. Часть пропана возвращается на верх колонны как орошение, а избыток отводится в виде готового продукта. Жидкость с низа колонны после подогрева поступает для дальнейшего разделения по такой же схеме в следующую колонну, где из неё выделяется в виде верхнего продукта смесь бутанов, а из нижней части отводится бензин. Аналогичным образом производится разделение бутанов на изобутан и нормальный бутан, а бензина — на изопентан, нормальный пентан, гексаны и т. д. Примерное содержание чистого вещества (в %) в товарном продукте того же наименования при переработке газового бензина: пропан 96; изобутан 95; нормальный бутан 96; изопентан 95; стабильный бензин 74.
Совершенствование технологической схемы Г. у. направлено на снижение энергетических и капитальных затрат, автоматизацию контроля и управления процессом путём установки хроматографических анализаторов качества продуктов на потоках и электронных вычислительных машин.
Лит.: Переработка и использование газа, М., 1962; Черный И. Р., Подготовка сырья для нефтехимии, М., 1966.
А. Л. Халиф.
Схема газофракционирующей установки: 1 — пропановая колонна; 2 — стабилизационная колонна; 3 — изобутановая колонна; 4 — конденсаторы-холодильники; 5 — подогреватели низа колонны; 6 — теплообменники; 7— холодильники.
Газы (агрегатное состояние вещества)
Га'зы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом ), агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Вещество в газообразном состоянии широко распространено в природе. Г. образуют атмосферу Земли, в значительных количествах содержатся в твёрдых земных породах, растворены в воде океанов, морей и рек. Солнце, звёзды, облака межзвёздного вещества состоят из Г. — нейтральных или ионизованных (плазмы). Встречающиеся в природных условиях Г. представляют собой, как правило, смеси химически индивидуальных Г.
Г. обладают рядом характерных свойств. Они полностью заполняют сосуд, в котором находятся, и принимают его форму. В отличие от твёрдых тел и жидкостей, объём Г. существенно зависит от давления и температуры. Коэффициент объёмного расширения Г. в обычных условиях (0—100°С) на два порядка выше, чем у жидкостей, и составляет в среднем 0,003663 град-1 . В табл. приведены данные о физических свойствах наиболее распространённых Г.
Любое вещество можно перевести в газообразное состояние надлежащим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически удобно изобразить в переменных: давление р — температура Т (в р, Т -диаграмме, рис. 1 ). При температурах ниже критической Тк (см. Критическое состояние ) эта область ограничена кривыми сублимации (возгонки) / и парообразования II. Это означает, что при любом давлении ниже критического рк существует температура Т (см. рис. 1), определяемая кривой сублимации или парообразования, выше которой вещество становится газообразным. В состояниях на кривой 1 (ниже тройной точки Tp ) газ находится в равновесии с твёрдым веществом (твёрдой фазой), а на кривой II (между тройной и критической точкой К. ) — с жидкой фазой. Газ в этих состояниях обычно называют паром вещества.
При температурах ниже Тк можно сконденсировать Г. — перевести его в др. агрегатное состояние (твёрдое или жидкое). При этом фазовое превращение Г. в жидкость или твёрдое тело происходит скачкообразно: весьма малое изменение давления приводит к конечному изменению ряда свойств вещества (например, плотности , энтальпии , теплоёмкости и др.). Процессы конденсации Г., особенно сжижение газов , имеют важное техническое значение.
При Т > Тк граница газообразной области условна, поскольку при этих температурах фазовые превращения не происходят. В ряде случаев за условную границу между Г. и жидкостью при сверхкритических температурах и давлениях принимают критическую изохору вещества (кривую постоянной плотности или удельного объёма, см. рис. 1), в непосредственной близости от которой свойства вещества изменяются, хотя и не скачком, но особенно быстро.
В связи с тем что область газового состояния очень обширна, свойства Г. при изменении температуры и давления могут меняться в широких пределах. Так, в нормальных условиях (при 0° С и атмосферном давлении) плотность Г. примерно в 1000 раз меньше плотности того же вещества в твёрдом или жидком состоянии. При комнатной температуре, но давлении, в 1017 раз меньшем атмосферного (предел, достигнутый современной вакуумной техникой ), плотность Г. составляет около 10 -20 г/см3 . В космических условиях плотность Г. может быть ещё на 10 порядков меньше (~10-30 /см 3 ).
С другой стороны, при высоких давлениях вещество, которое при сверхкритических температурах можно считать Г., обладает огромной плотностью (например, в центре некоторых звёзд ~109 г/см3 ). В зависимости от условий в широких пределах изменяются и др. свойства Г. — теплопроводность, вязкость и т. д.
Молекулярно-кинетическая теория Г. Молекулярно-кинетическая теория рассматривает Г. как совокупность слабо взаимодействующих частиц (молекул или атомов), находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удаётся объяснить основные физические свойства Г., особенно полно — свойства разреженных Г.
У достаточно разреженных Г. средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см3 Г. находится~ 1019 молекул и среднее расстояние между ними составляет ~ 10-6 см, или ~ 100 , тогда как межмолекулярное взаимодействие не существенно на расстояниях свыше 5—10 . Следовательно, в таких условиях молекулы взаимодействуют лишь при сближении на расстояние действия межмолекулярных сил. Такое сближение принято трактовать как столкновение молекул. Радиус действия межмолекулярных сил в рассмотренном примере в 10—20 раз меньше среднего расстояния между молекулами, так что общий объём, в котором эти силы могут сказываться (как бы «собственный объём» всех молекул), составляет 10-3 —10-4 от полного объёма Г. Это позволяет считать собственный объём молекул Г. в нормальных условиях пренебрежимо малым и рассматривать молекулы как материальные точки. Газ, молекулы которого рассматриваются как не взаимодействующие друг с другом материальные точки, называется идеальным. При тепловом равновесии идеального Г. все направления движения его молекул равновероятны, а скорости распределены в соответствии с Максвелла распределением . На рис. 2 приведён график этого распределения для азота при температурах 20 и 500°С. Из графика видно, что подавляющее большинство молекул имеет близкие значения скорости (максимум кривой соответствует скорости наиболее вероятной при данной температуре), но существует также известная часть молекул с малыми и очень большими скоростями. При помощи максвелловского распределения может быть определена т. н. средняя квадратичная скорость молекул связанная с температурой Т газа соотношением