Если эти физики правы, то гравитационное взаимодействие столь же сильно, как и остальные, только оно ослабляется, поскольку часть его утекает в пространство дополнительных измерений. Одним из глубоких следствий этой теории является то, что энергия, при которой квантовые взаимодействия можно измерить, возможно, не равна энергии Планка (1019 млрд электронвольт), как считалось ранее. Возможно, необходимы всего лишь триллионы электронвольт, а в таком случае при помощи Большого адронного коллайдера (завершение конструирования которого планируется к 2007 году), возможно, удастся уловить квантовые гравитационные эффекты еще в этом десятилетии. Это также побудило физиков-экспериментаторов открыть активную охоту на экзотические частицы за пределами Стандартной модели субатомных частиц. Возможно, квантовые гравитационные взаимодействия находятся в пределах нашей досягаемости.
Мембраны также предоставляют вполне вероятный, хоть и гипотетический ответ на загадку темного вещества. В романе Герберта Уэллса «Человек-невидимка» главный герой парил в четвертом измерении, а потому был невидим. Подобным образом, представим, что прямо над нашей Вселенной парит параллельный мир. Любая галактика в этой параллельной вселенной будет невидима для нас. Но поскольку гравитация вызвана искривлением гиперпространства, то гравитационное взаимодействие могло бы перемещаться между вселенными. Любая большая галактика в этой параллельной вселенной притягивалась бы через гиперпространство к галактике в нашей Вселенной. Таким образом, измерив свойства наших галактик, мы бы обнаружили, что их гравитационное притяжение гораздо больше, чем ожидалось согласно законам Ньютона, поскольку на заднем плане прячется другая галактика, парящая на соседней бране. Эта скрытая галактика за пределами нашей галактики была бы совершенно невидимой, паря в другом измерении, но она бы казалась рало, окружающим нашу галактику и содержащим в себе 90 % массы. Таким образом, существование темного вещества может объясняться присутствием параллельной вселенной.
Сталкивающиеся вселенныеМожет быть, и несколько преждевременно применять М-теорию к серьезной космологии. Тем не менее физики попытались применить «физику бран» для нового поворота в стандартном инфляционном подходе ко Вселенной. Внимание привлекают три возможные космологии.
Первая космология пытается ответить на вопрос: почему мы живем в четырех пространственно-временных измерениях? В принципе, М-теория может быть сформулирована во всех измерениях вплоть до одиннадцатого, а потому кажется загадочным, что выделяются именно эти четыре измерения. Роберт Бранденбергер и Кумрун Вафа выдвинули гипотезу о том, что причиной этого является геометрия струн.
Согласно предложенному ими сценарию, Вселенная зародилась в идеально симметричном состоянии, при этом все дополнительные измерения были свернуты, измеряясь в масштабах длины Планка, От расширения Вселенную сдерживали петли струн, плотно обмотанные вокруг различных измерений. Представьте себе спираль, которая не может расшириться, потому что она плотно обмотана струнами. Если струны каким-либо образом порвутся, то спираль освободится и расширится.
В этих крошечных измерениях Вселенная не может расшириться из-за обмотки струн и антиструн (грубо говоря, антиструны намотаны в противоположном направлении относительно струн). Если струна и антиструна сталкиваются, то они могут аннигилировать и исчезнуть, что похоже на развязывание узла. В очень больших измерениях настолько «просторно», что струны и антиструны редко сталкиваются и никогда не распутываются. Однако Бранденбергер и Вафа показали, что в трех или менее пространственных измерениях наиболее вероятен вариант событий, при котором струны и антиструны столкнутся. При таких столкновениях струны распутываются и измерения вырываются вовне, что и дает нам Большой Взрыв.
Привлекательной чертой такой картины является то, что топология струн дает нам примерное объяснение, почему мы видим вокруг себя четыре привычных измерения. Вселенные с дополнительными измерениями возможны, но вероятность увидеть эти вселенные ниже, поскольку они все еще плотно обмотаны струнами и антиструнами.
Но в М-теории существуют также и другие возможности. Если вселенные могут откалываться или отпочковываться одна от другой, что рождает новые вселенные, то, быть может, возможно и обратное: вселенные могут сталкиваться. При этом в момент столкновения образуются искры, дающие начало новым вселенным. Согласно такому сценарию, возможно, что Большой Взрыв произошел при столкновении двух параллельных вселенных-бран, а не при отпочковании от другой вселенной.
Эта вторая теория была предложена физиками Полом Щтайн-хардтом из Принстона, Бертом Оврутом из Пенсильвании и Нилом Туроком из Кембриджского университета, которые создали «экпиротическую» (что по-гречески означает «столкновение») Вселенную и включили в нее оригинальные черты картины, предлагаемой М-теорией. В такой Вселенной некоторые дополнительные измерения могли быть большими и даже бесконечными по размеру. Они начинаются с двух плоских однородных и параллельных три-бран, которые представляют состояние низкой энергии. Изначально они зародились как пустые холодные вселенные, но гравитационное взаимодействие постепенно подтягивает их ближе и ближе друг к другу. В конце концов они сталкиваются, и невероятная кинетическая энергия столкновения конвертируется в вещество и излучение, наполняющие нашу Вселенную. Некоторые называют эту теорию не теорией Большого Взрыва, а теорией «Большого Хлопка (или Схлопывания)», поскольку сценарий предполагает столкновение («схлопывание») двухбран.
Сила взрыва разбрасывает вселенные в стороны. Отделяясь друг от друга, эти две мембраны стремительно остывают и дают нам ту самую Вселенную, что мы видим сегодня. Остывание и расширение продолжаются триллионы лет, до тех пор, пока температура вселенных не достигнет температуры абсолютного нуля, а их плотность не составит один электрон на квадриллион кубических световых лет космоса. В сущности, Вселенная становится пустой и инертной. Но сила гравитации продолжает свое действие — она привлекает две мембраны друг к другу до тех пор, пока, спустя еще триллионы лет, они не столкнутся вновь, и этот цикл повторяется снова й снова.
Этот новый сценарий может добавить новые преимущества инфляции (плоскость, однородность). Он разрешает вопрос о том, почему Вселенная такая плоская — потому что с самого начала обе браньг были плоскими. Такая модель также объясняет проблему горизонта, то есть факт, что Вселенная видится такой однородной, куда бы мы ни взглянули. Это происходит потому, что мембране требуется много времени, чтобы медленно прийти в состояние равновесия. Таким образом, в то время как инфляция объясняет проблему горизонта тем, что Вселенная внезапно расширяется, этот сценарий решает проблему горизонта от противного — при помощи предположения о том, что в своем медленном движении Вселенная стремится к равновесию.
(Это также означает, что в гиперпространстве возможно существование других мембран, которые в будущем могут столкнуться с нашей, создавая тем самым еще один Большой Хлопок. Учитывая тот факт, что наша Вселенная ускоряется, еще одно столкновение, в сущности, весьма вероятно. Штайнхардт добавляет: «Возможно, ускорение расширения Вселенной является предвестником такого столкновения. Это не самая приятная мысль».)
Любой сценарий, который резко расходится с общепринятой инфляционной теорией, неизбежно приводит к жарким дебатам. В течение недели после помещения данной работав Сети АндрейЛинде, его жена Рената Каллош (которая занимается теорией струн) и Лев Кофман из Университета Торонто написали критический отзыв по поводу этого сценария. Линде раскритиковал эту модель потому, что нечто столь катастрофичное, как столкновение двух вселенных, могло бы создать сингулярность, где температуры и плотности стремятся к бесконечности. «Подобным образом можно бросить стул в черную дыру, которая испарит частицы стула, а затем сказать, что в ней каким-то образом сохраняется форма стула», — выразил свой протест Линде.
Штайнхардт ответил: «То, что выглядит как сингулярность в четырех измерениях, может вовсе не являться ею в пяти измерениях… Когда браньг сталкиваются, пятое измерение временно исчезает, но сами браны не исчезают. Поэтому плотность и температура не возрастают до бесконечности, а время не нарушает свойход. Хотя общая теория относительности здесь просто бесится, струнная теория ведет себя нормально. И то, что когда-то выглядело катастрофой для этой модели, теперь кажется поправимым».
На стороне Штайнхардта мощь М-теории, которая, как известно, исключает сингулярности. В сущности, именно поэтому физикам-теоретикам для начала необходима квантовая теория гравитации, чтобы исключить все бесконечности. Однако Линде указывает на концептуально слабое место этой картины, а именно заявление о том, что в самом начале браны существовали в плоском однородном состоянии. «Если начинать с совершенства, то возможно объяснить то, что вы видите… но вы до сих пор не ответили на вопрос: почему вселенная должна родиться совершенной?» — возражает Линде. Штайнхардт отвечает: «Плоское плюс плоское дает в сумме плоское». Иными словами, необходимо допустить, что мембраны родились в состоянии самой низкой энергии — будучи плоскими.