Шрифт:
Интервал:
Закладка:
В конструкциях маленькая лампа внутри, по крайней мере на первых порах, препятствовала бомбардировке внешней колбы. Мне пришла мысль проверить, как поведет себя в таких условиях металлическое сито, и я приготовил для этого несколько ламп, которые показаны на рисунке 31. В колбе Ь была расположена тонкая нить f (или головка) на платиновом проводе, проходящем сквозь стеклянную ножку и ведущем наружу. Нить / была окружена ситом s. Экспериментально было обнаружено, что в таких колбах сито с крупными ячейками ни в коей мере не препятствовало бомбардировке колбы Ь.
Когда был достигнут высокий вакуум, тень от сита была ясно видна на колбе и она скоро нагрелась. В некоторых лампах сито s было соединено с платиновым проводом, запаянным в стекло. Когда этот провод соединяли с другим выводом катушки индуктивности (эдс в таких случаях была небольшой), или с изолированной пластиной, бомбардировка колбы Ь уменьшалась. Но если взять сито с мелкими ячейками, то бомбардировка колбы тоже уменьшается, но даже если вакуум очень высокий, и потенциал трансформатора большой, колба Ь бомбардируется и нагревается очень быстро; хотя не видно решетки от сита из-за того, что ячейки очень мелкие.
Если же вокруг нити размещается стеклянная трубка или иное непрерывное тело, то бомбардировка полностью прекращается на некоторое время и колба b остается абсолютно холодной. Конечно, когда стеклянная трубка достаточно нагревается, бомбардировка внешней колбы моментально становится заметной. Эксперименты с этими колбами показали, что скорости бомбардирующих молекул и частиц должны быть значительными (хотя и не сравнимы со скоростью света), в ином случае было бы трудно понять, как они могут пронизывать тонкую металлическую решетку без всяких последствий, если только не обнаружится, что на такие маленькие частицы влияние может оказываться напрямую с определенного расстояния. Что касается скорости бомбардирующих атомов, то лорд Кельвин недавно высказал предположение, что она может составлять примерно один километр в секунду в обычной лампе Крукса. Поскольку потенциал, получаемый от катушки с разрядником, значительно выше, чем тот, что получается от обычной катушки, скорости должны быть, конечно, гораздо выше, когда лампа питается от такой катушки. Предположим, что скорость движения частицы в вакууме пять километров в секунду и она постоянна по всей траектории, как и должно быть в вакуумном сосуде, тогда, если скорость изменения заряда электрода равна пяти миллионам в секунду, то частица может удалиться от электрода не более чем на миллиметр, если на этом расстоянии на нее оказывается прямое воздействие, тогда молекулярный или атомный обмен будет очень медленным, и колба почти не будет подвергаться бомбардировке. По крайней мере, это должно быть так, если только воздействие электрода на атомы остаточного газа подобно воздействию заряженного тела на предметы, которые мы можем воспринимать. Горячее тело, помещенное в вакуумный сосуд, также приводит к бомбардировке, но просто горячее тело не колеблется в определенном ритме, так как молекулы его производят разные вибрации.
Если из колбы, содержащей головку или нить накаливания, откачать воздух, насколько это возможно при помощи самых лучших приспособлений, то часто можно наблюдать, что разряд не может поначалу пройти, но по прошествии некоторого времени, видимо, вследствие каких-либо изменений внутри колбы, разряд проходит и головка или нить накаляется. На самом деле, чем выше степень откачки воздуха, тем легче добиться накала. По-видимому, нет иных причин для накаливания в таких случаях, за исключением бомбардировки или подобного воздействия остатков газа или частиц вещества. Но если мы создали очень высокий вакуум, могут ли они иметь большое значение? Предположим, что мы получили совершенный вакуум, тогда очень интересно ответить на вопрос: Та среда, которая пронизывает всё пространство, она непрерывна или состоит из частиц? Если состоит из частиц, тогда нагрев проводника или нити в вакуумном сосуде может происходить вследствие бомбардировки эфиром, и тогда вообще нагрев проводника, через который пропущен ток высокой частоты и потенциала, должен подвергаться изменениям этой среды; тогда поверхностный эффект, очевидный рост омического сопротивления и т. д., по крайней мере частично, поддаются иному объяснению.
Разумеется, учитывая многие явления, связанные с высокочастотными токами, конечно, говорят о том, что весь космос скорее наполнен свободными атомами, а не лишен их. Будь так, он был бы темным и холодным, заполнен однородной субстанцией, в которой не может быть ни тепла, ни света. Как в этом случае передается энергия: независимыми носителями или вибрацией однородной субстанции? Этот важный вопрос до сих пор остается без ответа. Но многие из тех эффектов, что демонстрировались здесь сегодня, в особенности световые, накаливание и свечение, подразумевают наличие свободных атомов, без которых эти эффекты были бы невозможны.
Что касается накаливания тугоплавкой головки (или нити) в вакуумном сосуде, что и было темой нашего исследования, то основные выводы, которые могут служить инструкцией для создания таких ламп, можно сформулировать следующим образом: 1. Головка должна быть как можно меньше, сферической формы, полированная или гладкая, изготовлена из тугоплавкого материала, который выдерживает испарение. 2. Опора должна быть очень тонкой и защищена слоем алюминия и слюды, как я уже указывал ранее. 3. Воздух следует откачивать, насколько это возможно. 4. Частота должна быть практически самая высокая. 5. Ток должен колебаться гармонически, без внезапных прерываний. 6. Тепло следует концентрировать вокруг головки, помещая внутрь лампы небольшую колбу, или иным способом. 7. Из пространства между внешней и внутренней колбами воздух должен быть откачан.
Большинство соображений, высказанных по поводу накаливания твердого тела, применимы и к фосфоресценции. И в самом деле, в вакуумном сосуде фосфоресцентность, как правило, в первую очередь вызывается потоком атомов, испускаемых электродом и ударяющихся о фосфоресцентное тело. Даже в тех случаях, когда нет свидетельств такой бомбардировки, я полагаю, что фосфоресценция вызывается сильными ударами атомов, которые не обязательно испускаются электродом, но находятся под его индуктивным воздействием через среду или через другие атомы. То, что эти механические удары играют важную роль в возбуждении свечения в лампе, можно продемонстрировать в следующем эксперименте. Если взять лампу, как показано на рисунке 10, и максимально откачать из нее воздух настолько, что разряд не сможет пройти, то нить f будет индуктивно воздействовать на трубку t и заставит ее вибрировать. Если трубка о будет достаточно толстой, примерно дюйм шириной, то нить может колебаться настолько сильно, что каждый раз, когда она будет прикасаться к стеклу, она будет вызывать фосфоресценцию. Но свечение прекращается, когда нить успокаивается. Вибрацию можно прекратить и опять начать путем изменения частоты тока. Итак, нить имеет свой период колебаний, и если частота тока такова, что происходит резонанс, то она снова начинает колебаться, даже если потенциал невелик. Я часто становился свидетелем того, как нить в лампе разрушалась от такого механического резонанса. Нить колеблется обычно так быстро, что это невозможно увидеть, и экспериментатор поначалу может быть озадачен. Когда опыт, подобный приведенному, тщательно организован, потенциал тока должен быть крайне мал, и на основании этого я делаю вывод о том, что свечение происходит вследствие механического удара нити о стекло, так же, как это происходит, когда ножом бьют по большому куску сахара. Механический удар от отраженных атомов легко заметить, когда лампу с помещенной в ней головкой накаливания берут в руку, а потом внезапно включают ток. Я полагаю, что лампа разобьется на куски, если возникнет необходимость соблюсти условия, при которых возникает резонанс.
В предыдущем эксперименте, конечно, вопрос остается открытым, действительно ли стеклянная трубка сохраняет тот или иной заряд после контакта с нитью. Теперь если нить снова касается стекла в том же самом месте, когда она заряжена противоположно, заряды компенсируют друг друга под воздействием света. Но такое объяснение не имеет значения. Без сомнения, первоначальные заряды атомов или стекла играют какую-то роль в возбуждении фосфоресценции. Так, например, если фосфоресцентную лампу сначала соединить с одним выводом высокочастотной катушки и отметить степень свечения ее, а затем лампе передать мощный заряд от машины Хольца, причем желательно соединить ее с положительным выводом машины, обнаружится, если лампу вновь соединить с выводом высокочастотной катушки, свечение будет гораздо более интенсивным. Во время другого опыта я изучал возможность проявления фосфоресцентности в лампах, когда она вызвана накаливанием бесконечно тонкого поверхностного слоя светящегося тела. Удары атомов достаточно сильны, чтобы своим воздействием вызвать накал, поскольку они своими ударами накаляют тело значительных размеров. Если такие эффекты имеют место, то наилучшее приспособление для получения фосфоресценции в лампе, которое нам пока известно, — это катушка с разрядником, выдающая огромный потенциал при небольшом количестве базовых разрядов, скажем 25–30 в секунду, достаточных, чтобы глаз их не воспринимал. Это факт, что такая катушка вызывает свечение почти при любых условиях и при любой степени вакуумирования, и я был свидетелем случаев, когда эффекты фосфоресценции проявлялись даже при атмосферном давлении, когда потенциал был крайне высок. Но если фосфоресценция достигается за счет компенсации зарядов атомов (что бы это в конечном итоге ни значило), тогда, чем выше частота импульсов переменных зарядов, тем экономичнее производство света. Уже давно и хорошо известно, что все фосфоресцентные тела — плохие проводники электричества и тепла, и что все тела перестают светиться, когда достигаю определенной температуры. Проводники, напротив, этим качеством не обладают. И из этого правила есть лишь несколько исключений. Углерод — одно из них. Беккерель заметил, что углерод светится при определенной повышенной температуре, предшествующей его переходу в тускло-красное состояние. Это можно наблюдать в лампах, имеющих достаточно большой углеродный электрод (скажем, шарик диаметром 6 мм). После включения тока, через несколько секунд, электрод покрывает снежно-белая пленка, как раз перед тем, как он станет темно-красным. Замечено, что подобные явления происходят и с другими проводниками, но многие ученые скорее всего не отнесут их к истинным проявлениям фосфоресценции. Правда ли, что настоящее накаливание имеет отношение к фосфоресценции, возбуждаемой ударами атомов или механическими ударами, предстоит еще решить, но фактом является то, что при любых условиях, когда есть тенденция к локализации и усилению нагрева в точке столкновения, эти условия наиболее благоприятны для возникновения фосфоресценции. Итак, если электрод очень мал, можно сказать, что плотность очень высока; если потенциал очень высок, а газ сильно разрежен, все эти условия подразумевают высокую скорость бомбардирующих атомов, или частиц вещества, а следовательно, интенсивные удары, — и фосфоресценция очень интенсивна. Если в колбу поместить большой и маленький электроды и соединить их с индукционной катушкой, то маленький электрод начнет светиться, в то время как большой может и не светиться, так как чем меньше электрическая плотность, тем меньше скорость атомов. Лампу с большим электродом внутри, соединенным с катушкой, можно взять рукой и электрод может не засветиться; но если вместо этого лампы коснуться заостренным проводом, свечение моментально заполнит всю лампу, вследствие высокой плотности в месте контакта. Видимо, при низких частотах газы с большим атомным весом вызывают большую фосфоресценцию, чем газы с меньшим атомным весом, как, например, водород. При высоких частотах, наблюдений недостаточно, чтобы сделать надежный вывод. Кислород, как известно, дает очень сильные эффекты, но это частью можно объяснить химической реакцией. Кажется, что лампа, заполненная остатками водорода, возбуждается наиболее легко. Электроды, разрушающиеся наиболее легко, дают наибольшее свечение в лампах, но это состояние недолговечно вследствие нарушения вакуума и осаждения частиц электрода на светящихся поверхностях. Некоторые жидкости, как, например, масло, дают блестящий эффект фосфоресценции (или флюоресцентное™?), но он длится всего несколько секунд. Так, если на стенках колбы есть следы масла и включается ток, то свечение продолжается всего несколько мгновений, до тех пор, пока масло не улетучится. Из всех опробованных веществ, кажется, только сульфид цинка наиболее поддается фосфоресценции. Некоторые образцы этого материала, полученные благодаря любезности профессора Анри из Парижа, испытывались в данных лампах. Одним из недостатков этого сульфида является то, что он теряет свойство излучать свет после того, как его нагреют до температуры, которую никак нельзя назвать высокой. Следовательно, его можно использовать только при очень низкой интенсивности. Следует отметить то немаловажное его свойство, что при интенсивной бомбардировке из алюминиевого электрода, он приобретает черный цвет, но что характерно, возвращается в исходное состояние при остывании.
- Правда о военном Ржеве.Документы и факты - Евгений Фёдоров - Прочая документальная литература
- Остановки в пути. Вокруг света с Николаем Непомнящим. Книга первая - Николай Николаевич Непомнящий - Прочая документальная литература / Прочая научная литература / Путешествия и география
- В защиту науки (Бюллетень 6) - Комиссия по борьбе с лженаукой и фальсификацией научных исследований РАН - Прочая документальная литература
- Доклад о деятельности В.В. Путина на посту главы комитета по внешним связям мэрии Санкт-Петербурга - Марина Салье - Прочая документальная литература
- Сталин и враги народа - Андрей Вышинский - Прочая документальная литература
- 100 великих археологических открытий - Андрей Низовский - Прочая документальная литература
- Гипотезы и заблуждения, о которых должен знать современный человек - Елена Трибис - Прочая документальная литература
- Атомные агенты Кремля - Александр Иванович Колпакиди - Прочая документальная литература / Политика
- Рыцарский турнир. Турнирный этикет, доспехи и вооружение - Колтман Клифан - Прочая документальная литература
- «Армата». «Царь-Танк» на страже Родины - Андрей Чаплыгин - Прочая документальная литература