Печально? Для астрономов – да. Но галактическая пыль – это чрезвычайно важно. И не только потому, что без нее не было бы планет земной группы, а следовательно, и нас с вами, – пыль, как мы увидим далее, играет заметную роль в процессе звездообразования. Нельзя рассказывать о рождении Солнца, не разобравшись с ролью межзвездной пыли.
Прежде всего: откуда она берется?
Мы помним, что после краткого периода ядерных реакций в очень молодой расширяющейся Вселенной вещество было представлено крайне убогим набором химических элементов: водород, гелий, немного лития – и только. Эти три элемента вместе с их изотопами совершенно не склонны слипаться в некие агрегаты, образуя пылинки. Молекулы водорода Н2, способные образовываться при небольших температурах и разрушающиеся при нагревании, – вот по сути и все, на что способна столь бедная смесь элементов. Можно считать, что химическая история Вселенной (и нашей Галактики, конечно) началась лишь в звездную эпоху.
Наша Галактика с ее четырьмястами миллиардами звезд считается как минимум гигантской; некоторые классификации относят ее даже к сверхгигантским. Таких галактик, как наша, одна на тысячу. Хвастаться тут, конечно, нечем (и не перед кем) – важно понять, что благодаря значительной массе газового облака, давшего начало Галактике, процесс ее формирования был довольно быстрым. Разумеется, сверхгигантские Е-галактики вроде NGC6166, чья масса оценивается в 14 трлн солнечных масс, сформировались еще быстрее, но не в этом дело. Важно понять, что по сравнению с Солнечной системой Галактика довольно стара: ей никак не менее 12 млрд лет. За время, прошедшее от рождения первых звезд Млечного Пути до возникновения Солнечной системы, химическая история Галактики успела продвинуться далеко вперед.
Широко известен источник горения звезд: ядерные реакции превращения водорода в гелий. Они вроде бы ничего не добавляют к убогому первоначальному набору химических элементов, составляющих материю Вселенной. Правда, в боковой ветви протон-протонной реакции образуются бериллий и бор, но они же большей частью и тратятся в недрах звезды на образование того же гелия. Откуда берутся более тяжелые элементы?
В межзвездном пространстве ядерные реакции не идут – следовательно, тяжелые элементы рождаются опять-таки в звездах. Но не во всех. Водородное «горючее» звезды – ресурс принципиально исчерпаемый. Предположим, что в плотном и горячем ядре некой звезды, где как раз и шли ядерные реакции, водорода больше не осталось. Что произойдет? Звезда начнет понемногу остывать и со временем погаснет?
Да, если ее масса менее 0,35 массы Солнца. Нет – если масса звезды превышает указанный порог. В этом случае после исчерпания водородного «горючего» центральные области звезды сожмутся и разогреются, температура в центре звезды превысит 100 млн К (вместо 10–20 млн К для «нормальной» звезды), и «включится» другая ядерная реакция – тройной гелиевый процесс. Суть этой реакции в том, что при столь значительной температуре две альфа-частицы (ядра гелия) могут, преодолев кулоновский барьер отталкивания, слиться в ядро неустойчивого изотопа бериллия-8. Последнее скорее всего распадется обратно, но может так случиться, что в него врежется еще одна альфа-частица, обладающая высокой энергией. В этом случае образуется устойчивый изотоп углерода-12 и выделяется энергия. Светимость звезды увеличивается по сравнению с «нормальной» в десятки, если не сотни раз, ее внешние области сильно разбухают и охлаждаются до 2500–3500 К, и звезда становится красным гигантом. Подобные звезды широко известны, скажем, красный Альдебаран в созвездии Тельца – типичный красный гигант.
Если масса звезды достаточна, то ядерные реакции не прекращаются и после «выгорания» гелия в центральных областях. Температура звездных недр вновь повышается, и тогда становятся возможны (и действительно идут) реакции между углеродом и гелием с образованием кислорода и других элементов. Внутри звезды возникает слоистый источник энерговыделения: ближе к поверхности идут реакции на еще уцелевшем водороде, глубже – тройная гелиевая реакция, а еще глубже – самые разнообразные реакции между углеродом и гелием, а также между гелием и кислородом, азотом и т. д. Суть этих реакций – в последовательном присоединении альфа-частиц. Таким путем образуются все более тяжелые элементы – вплоть до «железного пика». Элементы тяжелее железа, никеля, кобальта в недрах «обычных» (пусть сверхгигантских по светимости) звезд не образуются. Нет, ядерные реакции, в результате которых могли бы образоваться и более тяжелые элементы, в принципе существуют, но они идут с поглощением энергии, а значит, как только они начинаются, температура недр звезды падает, и эти реакции прекращаются сами собой – типичный пример отрицательной обратной связи, стабилизирующей текущую ситуацию.
Но откуда во Вселенной взялись элементы тяжелее железа? Ведь на Земле существуют месторождения меди, свинца, ртути, золота, урана. И каким образом тяжелые элементы попадают из звездных недр в межзвездную среду? Неужели звезда выбрасывает их, подобно тому как Солнце выбрасывает поток частиц, известный под именем «солнечного ветра»?
Ни в коем случае. Солнце выбрасывает лишь электроны, протоны, ядра гелия, а доля более тяжелых элементов в «солнечном ветре» невелика. Правда, изредка встречаются «коптящие» звезды – массивные красные сверхгиганты высокой светимости с раздутыми холодными атмосферами, охваченными бурной конвекцией. Эти звезды действительно выбрасывают углерод, причем в виде пыли – отсюда и название. Но не так уж много того углерода. И как быть с остальными элементами?
Типичный красный гигант оканчивает свое существование превращением в белый карлик – крошечную звездочку низкой светимости. Внешние же области красного гиганта отделяются от него с небольшими (порядка десятков километров в секунду) скоростями и образуют так называемую планетарную туманность (рис. 8-10 на цветной вклейке), постепенно рассеивающуюся в пространстве[9]. Однако и планетарные туманности не могут обеспечить наблюдаемое во Вселенной (и особенно на Земле) обилие элементов.
Взрывы сверхновых звезд – вот тот «плавильный тигель», где образуются элементы тяжелее железа, и одновременно способ их доставки в межзвездную среду. Нет необходимости в рамках этой книги описывать быстротекущие (порядка одной-двух секунд) процессы, происходящие во время взрыва звезды. Описание этих процессов, к тому же далеко еще не изученных, увело бы нас слишком далеко от темы. Важно запомнить: во время этих катастрофических процессов вблизи ядра звезды при колоссальных давлениях, создаваемых ударной волной, и температурах порядка триллиона кельвинов в быстротекущих ядерных реакциях создается все разнообразие тяжелых элементов. Взрыв приводит к выбросу газовой оболочки, обогащенной этими элементами, в межзвездное пространство со скоростями от 1000 до 10 000 км/с. На месте бывшего сверхгиганта остается весьма компактный объект – нейтронная звезда, а расширяющаяся газовая оболочка постепенно тормозится о межзвездную среду (обжимая ее локальные уплотнения и стимулируя тем самым звездообразование) и мало-помалу рассеивается.
Так межзвездная среда обогащается химическими элементами. Обилие тех или иных элементов определяется прежде всего вероятностью соответствующих ядерных реакций и наличием «сырья» для их протекания. В общем и целом наблюдается понятная закономерность: чем элемент тяжелее, тем меньше его во Вселенной, хотя и тут есть свои «пики» и «провалы». Например, в земной коре не так уж мало (относительно, конечно) урана-238, несмотря на то что этот изотоп нестабилен, с периодом полураспада 4,5 млрд лет, зато ничтожно мало (десятки миллиграммов) астата. Основную причину такой «несправедливости» следует искать в конкретных ядерных реакциях, идущих при взрывах сверхновых звезд.
Но общее количество тяжелых элементов, выбрасываемых при взрывах звезд, довольно велико, и эти элементы присутствуют в космосе преимущественно в виде пылинок, формирующихся по мере остывания расширяющегося облака продуктов взрыва. Так, например, известный радиоисточник Кассиопея А – самый мощный объект своего класса, являющийся остатком взрыва сверхновой, вспыхнувшей около 1680 года, содержит достаточно пыли для образования десяти тысяч таких планет, как Земля. И это еще самая скромная оценка. Выходит, что при взрыве звезды в космос было выброшено весьма значительное количество тяжелого вещества – не менее 3 % массы Солнца.
По современным представлениям, многократно подтвержденным наблюдениями, звезды рождаются из холодной газовопылевой материи. В очень молодой Галактике, лишенной тяжелых элементов, но с уже достаточно остывшей газовой средой, рождалось очень много массивных горячих звезд с ничтожным (по астрономическим меркам) сроком жизни. Взрываясь как сверхновые, эти звезды быстро обогатили межзвездную среду газом и пылью. Астрономам пока еще не удалось найти в Галактике звезду, полностью лишенную тяжелых элементов (а наличие их в звездных фотосферах запросто «ловится» спектроскопией). Пока что рекордсменом по химической бедности является одна слабая звездочка в галактическом гало – она в 100 тысяч раз беднее тяжелыми элементами, чем Солнце. Ясно, что говорить о наличии у этой звезды планет земного типа не приходится – им просто неоткуда взяться.