Во многих книгах по занимательной математике встречается следующая задача, в которой речь идет лишь о 3 предметах. На столе расставлены 3 закрытые коробки. В одной из них находятся 2 монеты по 5 центов, в другой — 2 монеты по 10 центов и в третьей — 1 пятицентовая и 1 десятицентовая монета. На крышках коробок написано: 10 центов; 15 центов и 20 центов, но ни одна из надписей не соответствует содержимому коробки. Предположим, что из коробки с надписью «15 центов» (напомним, что надпись не соответствует содержимому коробки) извлекли 1 монету и положили на стол перед коробкой. Можно ли, взглянув на эту монету, сказать, какие монеты находятся в каждой из 3 коробок?
Как и в предыдущей задаче, многих вводит в заблуждение кажущаяся неоднозначность выбора: они думают, будто существует довольно много вариантов решения, тогда как на самом деле задача допускает единственное решение. Монета, извлеченная из коробки с надписью «15 центов» (не соответствующей содержимому), может быть монетой достоинством либо в 5 центов, либо в 10 центов. Если извлечена монета достоинством в 5 центов, то в коробке первоначально находились 2 монеты по 5 центов. Если извлечена монета достоинством в 10 центов, то в коробке первоначально находились 2 монеты по 10 центов. И в том и в другом случае содержимое остальных двух коробок восстанавливается однозначно. Нетрудно видеть, что не соответствующие содержимому каждой коробки надписи оставляют лишь 2 варианта распределения монет по: коробкам. После того как из коробки с ложной надписью «15 центов» извлечена 1 монета, один вариант исключается, и остается единственный допустимый вариант, соответствующий правильному решению.
Иногда встречается несколько более сложная разновидность той же задачи. Содержимое всех трех коробок требуется определить, извлекая наименьшее число монет (из любой коробки). Единственное решение задачи состоит в том, чтобы из коробки с надписью «15 центов» извлечь 1 монету. Может быть, вам удастся придумать более сложные варианты задачи: в одной коробке могут находиться более 2 монет, да и самих коробок может быть более 3.
С задачей о младенцах тесно связано немало других задач на сообразительность, так же, как и исходная задача, приводящих к элементарной теории вероятностей. Например, если карточки с именами младенцев перемешаны наугад, то какова вероятность, что у всех 4 младенцев окажутся карточки с их именами? С какой вероятностью у всех 4 младенцев карточки не будут соответствовать их именам? Какова вероятность, что по крайней мере у 1 младенца окажется карточка с его именем? Какова вероятность, что ровно у 1 младенца окажется карточка с его именем? Какова вероятность, что. по крайней мере у 2 младенцев окажутся карточки с их именами? Какова вероятность, что ровно у 2 младенцев окажутся карточки с их именами? Какова вероятность, что не более чем у 2 младенцев окажутся карточки с их именами? И так далее.
Вопрос о «по крайней мере одном» — независимо от того, о чем идет речь, — один из классических вопросов занимательной математики. Довольно часто его облекают в форму задачи об n посетителях ресторана, сдавших шляпы в гардероб. Рассеянный гардеробщик выдал посетителям номера наугад, нимало не заботясь о том, кому достанется номерок от шляпы — ее владельцу или кому-нибудь другому. Какова вероятность, что по крайней мере один посетитель получит свою шляпу? Оказывается, что при возрастании n эта вероятность быстро стремится к 1 — (1/e), то есть немногим больше ½. Здесь e — знаменитая иррациональная константа (число Эйлера), равная 2,71828… В задачах теории вероятностей она встречается так же часто, как число π в геометрических задачах.
Стаканы профессора Квиббла
У профессора Квиббла имеется для вас задача-головоломка.
Проф. Квиббл. Возьмите 3 стакана для сбивания молочного коктейля и попробуйте разложить по ним 11 монет так, чтобы в каждом стакане число монет было нечетным.
Проф. Квиббл. Задачка не из трудных, не так ли? И решений она допускает много. Например, в один стакан можно положить 3 монеты, в другой — 7 монет, а в третий — 1 монету.
Проф. Квиббл. А сумеете ли вы разложить по тем же 3 стаканам 10 монет так, чтобы число монет в каждом стакане было нечетным? Сделать это можно, хотя и не просто!
Проф. Квиббл. Надеюсь, вы не отступили перед трудностями? Вам нужно было лишь догадаться вставить один стакан в другой. После этого уже совсем нетрудно разложить монеты так, чтобы в каждом стакане оказалось нечетное число монет.
Подмножества Квиббла
Счастливая идея, позволяющая сразу же решить головоломку проф. Квиббла, сводится к тому, что одни и те же монеты могут одновременно находиться более чем в одном стакане. На языке теории множеств решение задачи допускает следующее описание: имеется два множества монет, одно из которых содержит 7 элементов, а другое — 3 элемента, причем в последнем множестве выделено подмножество, содержащее 1 элемент. Наглядно полученное решение можно изобразить в виде следующей диаграммы:
Найти все остальные решения мы предоставляем читателю. Додуматься до 10 решений, одно из которых предложил проф. Квиббл, не составит особого труда, но найти еще 5 решений (всего существует 15 решений задачи) не так-то просто: необходимо «озарение».
После того как вам удастся найти все 15 решений, попробуйте обобщить задачу, варьируя число монет, стаканов и отличительные особенности числа монет, разложенных по стаканам.
Основная идея «счастливой находки», позволившей решить задачу проф. Квиббла (элементы какого-то множества принадлежат другому множеству и при подсчете учитываются дважды), встречается во многих известных головоломках и парадоксах. Приведем лишь одну из таких задач, носящую шуточный характер.
После того как один школьник пропустил целую неделю занятий, его навестил учитель. Школьник принялся объяснять, почему ему некогда ходить в школу.
— Я сплю 8 часов в сутки. Это составляет 8 × 365 = 2920 часов в году, или, так как в сутках 24 часа, 2920: 24 (около 122) суток.
По субботам и воскресеньям школа не работает, что составляет за год 104 дня.
60 дней в году приходятся на летние каникулы.
На завтрак, обед и ужин у меня уходит 3 часа в день, то есть 3 × 365 = 1095 часов, или 1095: 24 (около 45 суток) в год.
По крайней мере 2 часа в день мне необходимы для отдыха, что составляет 2 × 365 = 730 часов, или 730: 24 (около 30 суток) в год.
Школьник выписал названные им числа в столбец и просуммировал:
На сон — 122
Субботы и воскресенья — 104
Летние каникулы — 60
Завтраки, обеды и ужины — 45
Отдых — 30
Итого — 361 день
— Видите, — продолжал школьник, — у меня остается всего-навсего 4 дня в год на болезни, а о праздниках я и не говорю!
Учитель внимательно проверил все выкладки, но не смог обнаружить в них ошибки. Проверьте этот парадокс на своих приятелях. Многие из них сумеют найти ошибку? А ошибка кроется в том, что некоторые подмножества дней года сосчитаны более одного раза: множества, на которые школьник разбил 365 дней в году, перекрываются (пересекаются) так же, как множества монет в стаканах проф. Квиббла.
Как поджарить ромштексы?
На лужайке перед домом мистер Джонсон соорудил небольшую плиту, иа которой за один час можно поджарить 2 ромштекса. Его жена и дочь Бетси очень проголодались и хотят поесть как можно скорей. Как быстрее всего поджарить 3 ромштекса?
Мистер Джонсон. Чтобы поджарить с двух сторон 1 ромштекс, требуется 20 мин (по 10 мин на каждую сторону). Значит, за 20 мин можно приготовить 2 ромштекса. Еще 20 мин мне понадобится, чтобы поджарить третий ромштекс, поэтому всего на приготовление 3 ромштексов придется затратить 40 мин.
Бетси. Папочка, ромштексы можно поджарить гораздо быстрее! Я только что придумала, как можно сэкономить 10 мин.
Какая удачная мысль позволила Бетси сократить приготовление обеда на 10 мин?
Чтобы объяснить предложенное Бетси решение, обозначим ромштексы A, B и C, а их стороны — цифрами 1 и 2. За первые 10 мин следует поджарить стороны А1 и В1.
Отложим ромштекс B в сторону и поджарим за следующие 10 мин стороны A2 и C1. К концу 20-й минуты ромштекс A будет готов.
Еще через 10 мин поджарятся стороны B2 и C2. Таким образом, на приготовление всех 3 ромштексов уйдет всего 30 мин, что и утверждала Бетси.
Общая стратегия
Рассмотренная нами простая комбинаторная задача относится к одному из разделов современной математики, известному под названием «исследование операций». На ее примере хорошо видно, что если серию операций необходимо произвести в кратчайший срок, то оптимальная последовательность операций может оказаться не вполне очевидной. Последовательность, которая на первый взгляд кажется оптимальной, в действительности может допускать существенное усовершенствование. В нашей проблеме удачная мысль сводится к тому, что после того, как ромштекс поджарен с одной стороны, отнюдь не обязательно тотчас же поджаривать его с другой стороны.