Однако интерпретацию понятий «энтропия» и «информация», которые появились в результате работы Шеннона, было трудно примирить с традиционным толкованием слов «информация» и «энтропия», возникшим в работе Больцмана. Конфликт между определением слова «информация», используемым Шенноном, и его разговорным значением, которое широко распространено и сегодня, легко понять, используя в качестве примера компьютеры. Подумайте о своем персональном компьютере. Будь то настольный компьютер, ноутбук или смартфон, вы используете его для хранения фотографий, документов и программного обеспечения. Вы считаете эти фотографии и документы «информацией» и, конечно, хорошо понимаете то, что эта информация хранится на жестком диске вашего устройства. Тем не менее, согласно Шеннону, если бы мы случайным образом перемешали все биты на жестком диске, удалив таким образом все ваши фотографии и документы, мы бы увеличили количество информации на жестком диске. Как это может быть? Дело в том, что определение термина «информация», предложенное Шенноном, учитывает только количество битов, необходимое для передачи сообщения о состоянии системы (в данном случае речь идет о последовательности битов, которые хранятся на вашем жестком диске). Поскольку нам требуется больше битов для создания сообщения о состоянии жесткого диска, полного случайных данных, чем о состоянии жесткого диска с фотографиями и документами, содержащими корреляции, позволяющие сжимать последовательности, определение Шеннона подразумевает то, что после перемешивания битов в случайном порядке на вашем жестком диске станет больше информации. Технически Шеннон прав, говоря о том, что нам необходимо большее количество битов для передачи сообщения о содержимом жесткого диска, наполненного случайными данными, чем о содержимом жесткого диска с фотографиями и документами. Однако теорию информации Шеннона, которая, по сути, представляет собой теорию коммуникативного инжиниринга, следует расширить, чтобы примирить ее с разговорным смыслом слова «информация» и работой Больцмана. В дополнение к работе Шеннона мне сначала нужно будет объяснить определение энтропии, которое возникло из работы Больцмана, а затем вывести определение, которое мы могли бы использовать для описания информационно насыщенных состояний, ассоциирующихся с компьютером, наполненным фотографиями и документами.
Чтобы понять разницу между определениями энтропии, используемыми Больцманом и Шенноном, рассмотрим наполовину заполненный стадион.[22] Одной важной характеристикой такого стадиона является то, что существует множество способов наполнить его наполовину, и путем исследования этих способов мы можем объяснить понятие энтропии.
Сначала мы рассмотрим случай, в котором люди могут беспрепятственно передвигаться по стадиону. При этом один из способов наполовину наполнить стадион сводится к тому, чтобы рассадить людей как можно ближе к полю, оставив все верхние ряды свободными. Другой способ предполагает размещение людей на дальних рядах (при этом нижние ряды останутся незанятыми). Тем не менее люди также могут заполнить полстадиона, заняв места случайным образом.
Теперь чтобы использовать пример со стадионом для объяснения понятия энтропии, мне нужно ввести еще две идеи. Во-первых, я буду называть каждую комбинацию из сидящих на стадионе людей состоянием системы (или, выражаясь технически, микросостоянием). Во-вторых, я буду исходить из того, что мы можем определить эквивалентные конфигурации, используя некоторый критерий, который для целей данной иллюстрации может быть просто средним заполненным рядом.
В данном примере принятое в статистической физике определение энтропии соответствует просто доле всех эквивалентных состояний (на самом деле это логарифм доли, однако эта формальность не имеет отношения к тому, что я пытаюсь сказать). Таким образом, энтропия является наименьшей, когда люди сидят максимально близко или максимально далеко от поля, поскольку существует только один способ такого размещения людей.[23] Энтропия является наибольшей, когда средним из занятых рядов является центральный, поскольку существует много способов размещения людей на местах, при которых средним занятым рядом будет центральный. В предложенном Больцманом определении энтропия представляет собой множество эквивалентных состояний. В случае со стадионом наибольшее число эквивалентных состояний существует тогда, когда средним из заполненных рядов является центральный.
Следует отметить, что энтропия, которая обычно ассоциируется с беспорядком, не является мерой беспорядка. Энтропия – это мера множества состояний (количества эквивалентных состояний). Тем не менее неупорядоченных состояний, как правило, бывает больше, поэтому на практике состояния высокой энтропии, скорее всего, будут неупорядоченными. Именно поэтому приравнивание беспорядка к энтропии не является таким уж неудачным упрощением. Однако увеличение энтропии может не сопровождаться увеличением беспорядка. Рассмотрим случай с расширением газа в коробке, которая удваивается в размере (или распространение людей по стадиону, увеличивающемуся в два раза). Энтропия газа увеличивается с размером коробки, поскольку в коробке большего размера существует больше вариантов организации частиц газа. Тем не менее газ в большей коробке не является более неупорядоченным, чем газ в меньшей коробке.
Шеннон был заинтересован в передаче микросостояния системы, например отдельного твита или расположения сидящих на нашем гипотетическом стадионе людей, поэтому он приравнял понятие информации к понятию энтропии, часто используя эти слова как синонимы. Передача сообщения об одном микросостоянии, в котором средним из занятых рядов является центральный, требует больше бит, так как при этом условии существует множество эквивалентных микросостояний, поэтому для передачи данных о некотором микросостоянии требуется создать очень конкретное сообщение. Таким образом, на языке Шеннона понятия информации и энтропии функционально эквивалентны, поскольку количество битов, необходимых для создания сообщения (информация по Шеннону), представляет собой функцию от числа возможных сообщений, которые могут быть переданы (множество состояний, которое мы понимаем как энтропию). Но, это не делает энтропию и информацию одним и тем же. Лауреат Нобелевской премии по химии 1967 года Манфред Эйген заметил: «Энтропия относится к среднему (физическому) состоянию, а информация – к конкретному (физическому) состоянию».[24]
Однако тот факт, что нам требуется больше битов для передачи сообщения о состоянии, в котором каждый человек случайно выбрал место на стадионе или в котором биты на жестком диске были случайным образом перемешаны, не означает, что эти состояния заключают в себе больше порядка или информации. Информация подразумевает увеличение количества битов, но это еще не все. В примере со стадионом множество состояний, при которых люди выбрали места случайно, характеризуется наивысшим значением энтропии, но при этом самым низким значением упорядоченности (хотя некоторые из этих состояний могут быть весьма упорядоченными). В самом деле, в области естественных наук и среди широкой общественности давно существует традиция приравнивания понятия информации к чему-то большему, чем биты, к тому, что подразумевает порядок. Подумайте о генетиках, разговаривающих об информации, содержащейся в ДНК, или об информации, содержащейся в музыкальных партитурах, на катушке пленки или в книге. В данных примерах слово «информация» говорит о присутствии порядка, а не только о количестве битов, необходимых для передачи сообщения о генетической последовательности, книги или нот.
Однако упорядоченные состояния являются редкими и своеобразными. Сначала я объясню, что я имею в виду под словом «редкий» в данном контексте. Далее я объясню своеобразие информационно насыщенных состояний, которое подразумевает корреляции, придающие слову «информация» его широко распространенный разговорный смысл.
Чтобы объяснить редкость упорядоченных состояний, я расширю пример со стадионом до того, что описывал Больцман в контексте атомов. Предположим, что стадион наполовину полон, но люди не могут свободно передвигаться. Теперь разрешены только те состояния, в которых средним из занимаемых рядов является центральный. В случае с физической системой это равносильно фиксированию энергии системы. Тем не менее, поскольку существует много различных состояний, в которых средним из занятых рядов является центральный, система по-прежнему предоставляет на выбор множество вариантов. Большинство этих состояний являются достаточно случайными. Другие, однако, весьма своеобразны. Люди на стадионе могут действовать подобно пикселам на экране, поэтому в некоторых из этих состояний комбинации сидящих людей могут образовывать такие слова, как «информация», или изображения лица. Однако насколько часто встречаются такие своеобразные состояния?