Закон убывающей предельной производительности применим к определенной технологии производства и на краткосрочном отрезке времени. Со временем изобретения и другие технологические усовершенствования могут привести к подъему всей кривой выпуска продукции, и, таким образом, больший выпуск может быть достигнут при тех же самых вводимых факторах.
8.3. Расширение производства
Расширение производства возможно различными путями. При сохранении неизменной технической базы увеличить выпуск можно за счет увеличения применения всех видов ресурсов. В этом случае имеет место увеличение масштабов производства, для его анализа используется понятие отдача от масштаба. В коротком периоде можно увеличить объем применения лишь переменного ресурса. В этом случае имеет место изменение пропорций, в которых применяются производственные ресурсы. Расширение производства в коротком периоде исследуется с помощью понятия убывающей отдачи (или убывающей производительности) переменного ресурса, или, как иногда говорят, закона изменяющихся пропорций. Возможно также расширение производства за счет изменения его технической базы, то есть научно-технического прогресса.
8.3.1. Отдача от масштаба. Длительный период
Если выбран технически эффективный метод производства, то увеличение выпуска возможно за счет пропорционального увеличения использования всех производственных ресурсов. Это и есть изменение масштаба производства.
Пусть первоначальное соотношение между выпуском и применяемыми ресурсами описывается производственной функцией
Q0 = f(K, L).
Если мы увеличим объемы применяемых ресурсов (масштаб производства) в k раз, то новый объем выпуска составит:
Q1 = f(kK, kL).
Если в результате выпуск увеличится также в k раз (Q1 = kQ0), то имеет место постоянная отдача от масштаба (рис. 8.3, а).
Если выпуск увеличится менее, чем в k раз (Q1 < kQ0), то имеет место убывающая отдача от масштаба (рис. 8.3, б).
Если выпуск увеличится более, чем в k раз (Q1 > kQ0), – имеет место возрастающая отдача от масштаба (рис. 8.3, в).
Введем еще одну характеристику производственной функции – однородность. Производственная функция называется однородной, если при увеличении количества всех производственных ресурсов в k раз, выпуск увеличивается в kt раз, так что
Q1(kK, kL) = ktQ0(K,L). (8.5)
Показатель t характеризует степень однородности функции. Если же равенство (8.5) для данной производственной функции не выполняется, то такая производственная функция называется неоднородной.
Степень однородности может использоваться для характеристики типа отдачи от масштаба. Если t = 1 – отдача от масштаба постоянна, если t < 1, имеет место убывающая отдача от масштаба, если же t > 1 – возрастающая отдача от масштаба.
Для однородной производственной функции отдача от масштаба может быть представлена графически. Показателем отдачи может служить расстояние вдоль луча, проведенного из начала координат между изоквантами, представляющими кратные Q объемы выпуска – Q, 2Q, 3Q и т. д. (рис. 8.3). В случае неоднородности производственной функции оценка отдачи от масштаба и ее графическое отображение могут представить значительные трудности.
Рис. 8.3. Соотношение между объемом выпуска и количеством применяемых ресурсов. Отдача от масштаба
Причины возникновения возрастающей отдачи от масштаба:
– специализация и разделение труда;
– использование более крупного и более эффективного оборудования;
– наличие сложных комплексных систем производства;
– многономенклатурное производство;
– финансовые выгоды крупномасштабных организаций и т. д.
Постоянная отдача от масштаба наблюдается в тех производствах, где ресурсы однородны (в техническом смысле) и их количества можно изменять пропорционально. В таких производствах увеличение выпуска может быть достигнуто путем кратного увеличения объема применения всех производственных ресурсов. Убывающая отдача, как правило, связана с ограниченными возможностями управления крупным производством. Концентрация управления (на неизменной технической базе) сверх определенного предела ведет к нарушению координации потоков ресурсы – выпуск.
Причинами отрицательной отдачи от масштаба также могут быть: недостатки менеджера, слабая мотивация труда рабочих, сложность агрегатно-поточной организации производства и т. д.
Во многих случаях характер отдачи от масштаба изменяется при достижении определенных пределов выпуска. До определенных пределов рост производства может сопровождаться постоянной и даже возрастающей отдачей от масштаба, которая затем сменяется убывающей.
Лучи, проведенные из начала координат на рис. 8.3, называют линиями роста. Они характеризуют технически возможные пути расширения производства, то есть перехода с более низкой на более высокую изокванту.
Среди возможных линий роста представляют интерес изоклинали, вдоль которых предельная норма технического замещения ресурсов при любом объеме выпуска постоянна.
8.3.2. Убывающая отдача переменного ресурса. Короткий период
В коротком периоде в отличие от длительного часть ресурсов остается неизменной, тогда как другая часть может быть увеличена. Поэтому для короткого периода линия роста может быть представлена не лучом, проведенным из начала координат, а прямой, параллельной оси переменного фактора. Очевидно, что соотношение K/L вдоль такой линии уменьшается, поскольку фиксированное количество К приходится на все большее количество L. Таким образом, в коротком периоде рост выпуска происходит при изменяющихся пропорциях между постоянным и переменным ресурсом.
При этом увеличение количества переменного ресурса рано или поздно приведет к сокращению предельного и среднего продукта этого ресурса. Если бы этого не произошло, можно было бы, например, увеличивая количество удобрений, достигнуть такой урожайности, что весь мировой урожай мог бы собираться на участке земли, не превышающем по площади размеров цветочной клумбы.
Действие закона изменяющихся пропорций иллюстрирует рис. 8.4.